Exemplo n.º 1
0
def _eval_expint_k(A, B, x):
    # helper function for all subsequent intervals
    A, B = [jnp.array(U, dtype=x.dtype) for U in [A, B]]
    one = _constant_like(x, 1.0)
    w = one / x
    f = jnp.polyval(A, w) / jnp.polyval(B, w)
    f = w * f + one
    return jnp.exp(x) * w * f
Exemplo n.º 2
0
def _expint1(x):
    # 0 < x <= 2
    A = [
        -5.350447357812542947283e0,
        2.185049168816613393830e2,
        -4.176572384826693777058e3,
        5.541176756393557601232e4,
        -3.313381331178144034309e5,
        1.592627163384945414220e6,
    ]
    B = [
        1.0,
        -5.250547959112862969197e1,
        1.259616186786790571525e3,
        -1.756549581973534652631e4,
        1.493062117002725991967e5,
        -7.294949239640527645655e5,
        1.592627163384945429726e6,
    ]
    A, B = [jnp.array(U, dtype=x.dtype) for U in [A, B]]
    f = jnp.polyval(A, x) / jnp.polyval(B, x)
    return x * f + jnp.euler_gamma + jnp.log(x)