def logpdf(x, loc=0, scale=1): x, loc, scale = _promote_args_inexact("norm.logpdf", x, loc, scale) two = _constant_like(x, 2) scale_sqrd = lax.pow(scale, two) log_normalizer = lax.log(lax.mul(_constant_like(x, 2 * np.pi), scale_sqrd)) quadratic = lax.div(lax.pow(lax.sub(x, loc), two), scale_sqrd) return lax.div(lax.neg(lax.add(log_normalizer, quadratic)), two)
def logpdf(x, b, loc=0, scale=1): x, b, loc, scale = _promote_args_inexact("pareto.logpdf", x, b, loc, scale) one = _constant_like(x, 1) scaled_x = lax.div(lax.sub(x, loc), scale) normalize_term = lax.log(lax.div(scale, b)) log_probs = lax.neg( lax.add(normalize_term, lax.mul(lax.add(b, one), lax.log(scaled_x)))) return where(lax.lt(x, lax.add(loc, scale)), -inf, log_probs)
def logpdf(x, df, loc=0, scale=1): x, df, loc, scale = _promote_args_inexact("t.logpdf", x, df, loc, scale) two = _lax_const(x, 2) scaled_x = lax.div(lax.sub(x, loc), scale) df_over_two = lax.div(df, two) df_plus_one_over_two = lax.add(df_over_two, _lax_const(x, 0.5)) normalize_term_const = lax.mul(lax.mul(scale, scale), _lax_const(x, np.pi)) normalize_term_tmp = lax.div(lax.log(lax.mul(normalize_term_const, df)), two) normalize_term = lax.sub(lax.add(lax.lgamma(df_over_two), normalize_term_tmp), lax.lgamma(df_plus_one_over_two)) quadratic = lax.div(lax.mul(scaled_x, scaled_x), df) return lax.neg(lax.add(normalize_term, lax.mul(df_plus_one_over_two, lax.log1p(quadratic))))
def logpdf(x, df, loc=0, scale=1): x, df, loc, scale = _promote_args_inexact("chi2.logpdf", x, df, loc, scale) one = _constant_like(x, 1) two = _constant_like(x, 2) y = lax.div(lax.sub(x, loc), scale) df_on_two = lax.div(df, two) kernel = lax.sub(lax.mul(lax.sub(df_on_two, one), lax.log(y)), lax.div(y,two)) nrml_cnst = lax.neg(lax.add(lax.lgamma(df_on_two),lax.div(lax.mul(lax.log(two), df),two))) log_probs = lax.add(lax.sub(nrml_cnst, lax.log(scale)), kernel) return where(lax.lt(x, loc), -inf, log_probs)
def logaddexp2(x1, x2): x1, x2 = _promote_args_inexact("logaddexp2", x1, x2) amax = lax.max(x1, x2) if dtypes.issubdtype(x1.dtype, np.floating): delta = lax.sub(x1, x2) return lax.select(lax_internal._isnan(delta), lax.add(x1, x2), # NaNs or infinities of the same sign. lax.add(amax, lax.div(lax.log1p(exp2(lax.neg(lax.abs(delta)))), _constant_like(x1, np.log(2))))) else: delta = lax.sub(lax.add(x1, x2), lax.mul(amax, _constant_like(amax, 2))) out = lax.add(amax, lax.div(lax.log1p(exp2(delta)), _constant_like(x1, np.log(2)))) return lax.complex(lax.real(out), _wrap_between(lax.imag(out), np.pi / np.log(2)))
def _mean(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None, out=None, keepdims=False, *, where=None): _check_arraylike("mean", a) lax_internal._check_user_dtype_supported(dtype, "mean") if out is not None: raise NotImplementedError( "The 'out' argument to jnp.mean is not supported.") if where is None: if axis is None: normalizer = core.dimension_as_value(np.size(a)) else: normalizer = core.dimension_as_value(_axis_size(a, axis)) else: normalizer = sum(_broadcast_to(where, np.shape(a)), axis, dtype=dtype, keepdims=keepdims) if dtype is None: dtype = dtypes._to_inexact_dtype(dtypes.dtype(a)) dtype = dtypes.canonicalize_dtype(dtype) return lax.div(sum(a, axis, dtype=dtype, keepdims=keepdims, where=where), lax.convert_element_type(normalizer, dtype))
def logpdf(x, loc=0, scale=1): x, loc, scale = _promote_args_inexact("cauchy.logpdf", x, loc, scale) pi = _constant_like(x, np.pi) scaled_x = lax.div(lax.sub(x, loc), scale) normalize_term = lax.log(lax.mul(pi, scale)) return lax.neg( lax.add(normalize_term, lax.log1p(lax.mul(scaled_x, scaled_x))))
def nanvar(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None, out=None, ddof=0, keepdims=False, where=None): _check_arraylike("nanvar", a) lax_internal._check_user_dtype_supported(dtype, "nanvar") if out is not None: raise NotImplementedError( "The 'out' argument to jnp.nanvar is not supported.") a_dtype, dtype = _var_promote_types(dtypes.dtype(a), dtype) a_mean = nanmean(a, axis, dtype=a_dtype, keepdims=True, where=where) centered = _where(lax_internal._isnan(a), 0, a - a_mean) # double-where trick for gradients. if dtypes.issubdtype(centered.dtype, np.complexfloating): centered = lax.real(lax.mul(centered, lax.conj(centered))) else: centered = lax.square(centered) normalizer = sum(lax_internal.bitwise_not(lax_internal._isnan(a)), axis=axis, keepdims=keepdims, where=where) normalizer = normalizer - ddof normalizer_mask = lax.le(normalizer, 0) result = sum(centered, axis, keepdims=keepdims, where=where) result = _where(normalizer_mask, np.nan, result) divisor = _where(normalizer_mask, 1, normalizer) out = lax.div(result, lax.convert_element_type(divisor, result.dtype)) return lax.convert_element_type(out, dtype)
def zeta(x, q=None): assert q is not None, "Riemann zeta function is not implemented yet." # Reference: Johansson, Fredrik. # "Rigorous high-precision computation of the Hurwitz zeta function and its derivatives." # Numerical Algorithms 69.2 (2015): 253-270. # https://arxiv.org/abs/1309.2877 - formula (5) # here we keep the same notation as in reference s, a = _promote_args_inexact("zeta", x, q) dtype = lax.dtype(a).type s_, a_ = jnp.expand_dims(s, -1), jnp.expand_dims(a, -1) # precision ~ N, M N = M = dtype(8) if lax.dtype(a) == jnp.float32 else dtype(16) assert M <= len(_BERNOULLI_COEFS) k = jnp.expand_dims(np.arange(N, dtype=N.dtype), tuple(range(a.ndim))) S = jnp.sum((a_ + k)**-s_, -1) I = lax.div((a + N)**(dtype(1) - s), s - dtype(1)) T0 = (a + N)**-s m = jnp.expand_dims(np.arange(2 * M, dtype=M.dtype), tuple(range(s.ndim))) s_over_a = (s_ + m) / (a_ + N) T1 = jnp.cumprod(s_over_a, -1)[..., ::2] T1 = jnp.clip(T1, a_max=jnp.finfo(dtype).max) coefs = np.expand_dims( np.array(_BERNOULLI_COEFS[:T1.shape[-1]], dtype=dtype), tuple(range(a.ndim))) T1 = T1 / coefs T = T0 * (dtype(0.5) + T1.sum(-1)) return S + I + T
def nanmean(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None, out=None, keepdims=False, where=None): _check_arraylike("nanmean", a) lax_internal._check_user_dtype_supported(dtype, "nanmean") if out is not None: raise NotImplementedError( "The 'out' argument to jnp.nanmean is not supported.") if dtypes.issubdtype(dtypes.dtype(a), np.bool_) or dtypes.issubdtype( dtypes.dtype(a), np.integer): return mean(a, axis, dtype, out, keepdims, where=where) if dtype is None: dtype = dtypes.dtype(a) nan_mask = lax_internal.bitwise_not(lax_internal._isnan(a)) normalizer = sum(nan_mask, axis=axis, dtype=np.int32, keepdims=keepdims, where=where) normalizer = lax.convert_element_type(normalizer, dtype) td = lax.div(nansum(a, axis, dtype=dtype, keepdims=keepdims, where=where), normalizer) return td
def hypot(x1, x2): _check_arraylike("hypot", x1, x2) x1, x2 = _promote_dtypes_inexact(x1, x2) x1 = lax.abs(x1) x2 = lax.abs(x2) x1, x2 = maximum(x1, x2), minimum(x1, x2) return lax.select(x1 == 0, x1, x1 * lax.sqrt(1 + lax.square(lax.div(x2, lax.select(x1 == 0, lax_internal._ones(x1), x1)))))
def avgpool_op(self, params: Tuple, inputs: DeviceArray): out = lax.reduce_window(inputs, 0.0, lax.add, self.pool_size, self.strides, self.padding) ones = jnp.ones((1, inputs.shape[1], inputs.shape[2], 1), dtype=inputs.dtype) window_sizes = lax.reduce_window(ones, 0.0, lax.add, self.pool_size, self.strides, self.padding) return lax.div(out, window_sizes)
def cdf(x, loc=0, scale=1): x, loc, scale = _promote_args_inexact("laplace.cdf", x, loc, scale) half = _constant_like(x, 0.5) one = _constant_like(x, 1) zero = _constant_like(x, 0) diff = lax.div(lax.sub(x, loc), scale) return lax.select(lax.le(diff, zero), lax.mul(half, lax.exp(diff)), lax.sub(one, lax.mul(half, lax.exp(lax.neg(diff)))))
def logpdf(x, a, loc=0, scale=1): x, a, loc, scale = _promote_args_inexact("gamma.logpdf", x, a, loc, scale) one = _lax_const(x, 1) y = lax.div(lax.sub(x, loc), scale) log_linear_term = lax.sub(xlogy(lax.sub(a, one), y), y) shape_terms = lax.add(gammaln(a), lax.log(scale)) log_probs = lax.sub(log_linear_term, shape_terms) return where(lax.lt(x, loc), -inf, log_probs)
def sinc(x): _check_arraylike("sinc", x) x, = _promote_dtypes_inexact(x) eq_zero = lax.eq(x, _lax_const(x, 0)) pi_x = lax.mul(_lax_const(x, np.pi), x) safe_pi_x = _where(eq_zero, _lax_const(x, 1), pi_x) return _where(eq_zero, _sinc_maclaurin(0, pi_x), lax.div(lax.sin(safe_pi_x), safe_pi_x))
def floor_divide(x1, x2): x1, x2 = _promote_args("floor_divide", x1, x2) if onp.issubdtype(_dtype(x1), onp.integer): quotient = lax.div(x1, x2) select = logical_and(lax.sign(x1) != lax.sign(x2), lax.rem(x1, x2) != 0) # TODO(mattjj): investigate why subtracting a scalar was causing promotion return where(select, quotient - onp.array(1, _dtype(quotient)), quotient) else: return _float_divmod(x1, x2)[0]
def round(a, decimals=0): if onp.issubdtype(_dtype(a), onp.integer): return a # no-op on integer types if decimals == 0: return lax.round(a) factor = _constant_like(a, 10**decimals) return lax.div(lax.round(lax.mul(a, factor)), factor)
def _float_divmod(x1, x2): # see float_divmod in floatobject.c of CPython mod = lax.rem(x1, x2) div = lax.div(lax.sub(x1, mod), x2) ind = lax.bitwise_and(mod != 0, lax.sign(x2) != lax.sign(mod)) mod = lax.select(ind, mod + x2, mod) div = lax.select(ind, div - _constant_like(div, 1), div) return lax.round(div), mod
def _segment_update(name: str, data: Array, segment_ids: Array, scatter_op: Callable, num_segments: Optional[int] = None, indices_are_sorted: bool = False, unique_indices: bool = False, bucket_size: Optional[int] = None, reducer: Optional[Callable] = None, mode: Optional[lax.GatherScatterMode] = None) -> Array: jnp._check_arraylike(name, data, segment_ids) mode = lax.GatherScatterMode.FILL_OR_DROP if mode is None else mode data = jnp.asarray(data) segment_ids = jnp.asarray(segment_ids) dtype = data.dtype if num_segments is None: num_segments = jnp.max(segment_ids) + 1 num_segments = core.concrete_or_error( int, num_segments, "segment_sum() `num_segments` argument.") if num_segments is not None and num_segments < 0: raise ValueError("num_segments must be non-negative.") num_buckets = 1 if bucket_size is None \ else util.ceil_of_ratio(segment_ids.size, bucket_size) if num_buckets == 1: out = jnp.full((num_segments, ) + data.shape[1:], _get_identity(scatter_op, dtype), dtype=dtype) return _scatter_update(out, segment_ids, data, scatter_op, indices_are_sorted, unique_indices, normalize_indices=False, mode=mode) # Bucketize indices and perform segment_update on each bucket to improve # numerical stability for operations like product and sum. assert reducer is not None out = jnp.full((num_buckets, num_segments) + data.shape[1:], _get_identity(scatter_op, dtype), dtype=dtype) out = _scatter_update( out, np.index_exp[lax.div(jnp.arange(segment_ids.shape[0]), bucket_size), segment_ids[None, :]], data, scatter_op, indices_are_sorted, unique_indices, normalize_indices=False, mode=mode) return reducer(out, axis=0).astype(dtype)
def multigammaln(a, d): d = core.concrete_or_error(int, d, "d argument of multigammaln") a, d = _promote_args_inexact("multigammaln", a, d) constant = lax.mul(lax.mul(lax.mul(_constant_like(a, 0.25), d), lax.sub(d, _constant_like(a, 1))), lax.log(_constant_like(a, np.pi))) res = jnp.sum(gammaln(jnp.expand_dims(a, axis=-1) - lax.div(jnp.arange(d), _constant_like(a, 2))), axis=-1) return res + constant
def logpdf(x, a, b, loc=0, scale=1): x, a, b, loc, scale = _promote_args_inexact("beta.logpdf", x, a, b, loc, scale) one = lax._const(x, 1) shape_term = lax.neg(betaln(a, b)) y = lax.div(lax.sub(x, loc), scale) log_linear_term = lax.add(xlogy(lax.sub(a, one), y), xlog1py(lax.sub(b, one), lax.neg(y))) log_probs = lax.sub(lax.add(shape_term, log_linear_term), lax.log(scale)) return where(logical_or(lax.gt(x, lax.add(loc, scale)), lax.lt(x, loc)), -inf, log_probs)
def multigammaln(a, d): a, = _promote_args_inexact("multigammaln", a) d = lax.convert_element_type(d, lax.dtype(a)) constant = lax.mul( lax.mul(lax.mul(_constant_like(a, 0.25), d), lax.sub(d, _constant_like(a, 1))), lax.log(_constant_like(a, np.pi))) res = jnp.sum(gammaln( jnp.expand_dims(a, axis=-1) - lax.div(jnp.arange(d), _constant_like(a, 2))), axis=-1) return res + constant
def floor_divide(x1, x2): x1, x2 = _promote_args("floor_divide", x1, x2) dtype = dtypes.dtype(x1) if dtypes.issubdtype(dtype, np.integer): quotient = lax.div(x1, x2) select = logical_and(lax.sign(x1) != lax.sign(x2), lax.rem(x1, x2) != 0) # TODO(mattjj): investigate why subtracting a scalar was causing promotion return _where(select, quotient - 1, quotient) elif dtypes.issubdtype(dtype, np.complexfloating): x1r = lax.real(x1) x1i = lax.imag(x1) x2r = lax.real(x2) x2i = lax.imag(x2) which = lax.ge(lax.abs(x2r), lax.abs(x2i)) rat1 = _where(which, lax.full_like(x2i, 1), lax.div(x2r, x2i)) rat2 = _where(which, lax.div(x2i, x2r), _lax_const(x2i, 1)) out = lax.floor(lax.div(lax.add(lax.mul(x1r, rat1), lax.mul(x1i, rat2)), lax.add(lax.mul(x2r, rat1), lax.mul(x2i, rat2)))) return lax.convert_element_type(out, dtype) else: return _float_divmod(x1, x2)[0]
def _atan2_taylor(primals_in, series_in): x, y = primals_in primal_out = lax.atan2(x, y) x, series = jet(lax.div, primals_in, series_in) c0, cs = jet(lambda x: lax.div(1, 1 + lax.square(x)), (x, ), (series, )) c = [c0] + cs u = [x] + series v = [primal_out] + [None] * len(series) for k in range(1, len(v)): v[k] = fact(k-1) * sum(_scale(k, j) * c[k-j] * u[j] for j in range(1, k + 1)) primal_out, *series_out = v return primal_out, series_out
def multigammaln(a, d): d = core.concrete_or_error(int, d, "d argument of multigammaln") a, d_ = _promote_args_inexact("multigammaln", a, d) constant = lax.mul( lax.mul(lax.mul(_lax_const(a, 0.25), d_), lax.sub(d_, _lax_const(a, 1))), lax.log(_lax_const(a, np.pi))) b = lax.div(jnp.arange(d, dtype=d_.dtype), _lax_const(a, 2)) res = jnp.sum(gammaln( jnp.expand_dims(a, axis=-1) - jnp.expand_dims(b, axis=tuple(range(a.ndim)))), axis=-1) return res + constant
def _var(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None, out=None, ddof=0, keepdims=False, *, where=None): _check_arraylike("var", a) lax_internal._check_user_dtype_supported(dtype, "var") if out is not None: raise NotImplementedError( "The 'out' argument to jnp.var is not supported.") computation_dtype, dtype = _var_promote_types(dtypes.dtype(a), dtype) a = a.astype(computation_dtype) a_mean = mean(a, axis, dtype=computation_dtype, keepdims=True, where=where) centered = lax.sub(a, a_mean) if dtypes.issubdtype(centered.dtype, np.complexfloating): centered = lax.real(lax.mul(centered, lax.conj(centered))) else: centered = lax.square(centered) if where is None: if axis is None: normalizer = core.dimension_as_value(np.size(a)) else: normalizer = core.dimension_as_value(_axis_size(a, axis)) else: normalizer = sum(_broadcast_to(where, np.shape(a)), axis, dtype=dtype, keepdims=keepdims) normalizer = normalizer - ddof result = sum(centered, axis, keepdims=keepdims, where=where) out = lax.div(result, lax.convert_element_type(normalizer, result.dtype)) return lax.convert_element_type(out, dtype)
def variance(self): # var is inf for alpha <= 2 a = lax.div((self.scale**2) * self.alpha, (self.alpha - 1)**2 * (self.alpha - 2)) return np.where(self.alpha <= 2, np.inf, a)
def mean(self): # mean is inf for alpha <= 1 a = lax.div(self.alpha * self.scale, (self.alpha - 1)) return np.where(self.alpha <= 1, np.inf, a)
def expit(x): x = asarray(x) one = lax._const(x, 1) return lax.div(one, lax.add(one, lax.exp(lax.neg(x))))
def logit(x): x = asarray(x) return lax.log(lax.div(x, lax.sub(lax._const(x, 1), x)))