Exemplo n.º 1
0
Arquivo: hic.py Projeto: xuanblo/jcvi
def prepare_synteny(tourfile, lastfile, odir, p, opts):
    """
    Prepare synteny plots for movie().
    """
    qbedfile, sbedfile = get_bed_filenames(lastfile, p, opts)
    qbedfile = op.abspath(qbedfile)
    sbedfile = op.abspath(sbedfile)

    qbed = Bed(qbedfile, sorted=False)
    contig_to_beds = dict(qbed.sub_beds())

    # Create a separate directory for the subplots and movie
    mkdir(odir, overwrite=True)
    os.chdir(odir)
    logging.debug("Change into subdir `{}`".format(odir))

    # Make anchorsfile
    anchorsfile = ".".join(op.basename(lastfile).split(".", 2)[:2]) \
                  + ".anchors"
    fw = open(anchorsfile, "w")
    for b in Blast(lastfile):
        print >> fw, "\t".join((gene_name(b.query), gene_name(b.subject),
                                str(int(b.score))))
    fw.close()

    # Symlink sbed
    symlink(sbedfile, op.basename(sbedfile))

    return anchorsfile, qbedfile, contig_to_beds
Exemplo n.º 2
0
Arquivo: ies.py Projeto: Hensonmw/jcvi
def insertion(args):
    """
    %prog insertion mic.mac.bed

    Find IES based on mapping MIC reads to MAC genome. Output a bedfile with
    'lesions' (stack of broken reads) in the MAC genome.
    """
    p = OptionParser(insertion.__doc__)
    p.add_option("--mindepth", default=6, type="int",
                 help="Minimum depth to call an insertion")
    p.set_outfile()
    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    bedfile, = args
    mindepth = opts.mindepth
    bed = Bed(bedfile)
    fw = must_open(opts.outfile, "w")
    for seqid, feats in bed.sub_beds():
        left_ends = Counter([x.start for x in feats])
        right_ends = Counter([x.end for x in feats])
        selected = []
        for le, count in left_ends.items():
            if count >= mindepth:
                selected.append((seqid, le, "LE-{0}".format(le), count))
        for re, count in right_ends.items():
            if count >= mindepth:
                selected.append((seqid, re, "RE-{0}".format(re), count))
        selected.sort()
        for seqid, pos, label, count in selected:
            label = "{0}-r{1}".format(label, count)
            print >> fw, "\t".join((seqid, str(pos - 1), str(pos), label))
Exemplo n.º 3
0
def nucmer(args):
    """
    %prog nucmer mappings.bed MTR.fasta assembly.fasta chr1 3

    Select specific chromosome region based on MTR mapping. The above command
    will extract chr1:2,000,001-3,000,000.
    """
    p = OptionParser(nucmer.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 5:
        sys.exit(not p.print_help())

    mapbed, mtrfasta, asmfasta, chr, idx = args
    idx = int(idx)
    m1 = 1000000
    bedfile = "sample.bed"
    bed = Bed()
    bed.add("\t".join(str(x) for x in (chr, (idx - 1) * m1, idx * m1)))
    bed.print_to_file(bedfile)

    cmd = "intersectBed -a {0} -b {1} -nonamecheck -sorted | cut -f4".format(mapbed, bedfile)
    idsfile = "query.ids"
    sh(cmd, outfile=idsfile)

    sfasta = fastaFromBed(bedfile, mtrfasta)
    qfasta = "query.fasta"
    cmd = "faSomeRecords {0} {1} {2}".format(asmfasta, idsfile, qfasta)
    sh(cmd)

    cmd = "nucmer {0} {1}".format(sfasta, qfasta)
    sh(cmd)

    mummerplot_main(["out.delta", "--refcov=0"])
    sh("mv out.pdf {0}.{1}.pdf".format(chr, idx))
Exemplo n.º 4
0
def bed(args):
    """
    %prog bed anchorsfile

    Convert ANCHORS file to BED format.
    """
    from collections import defaultdict
    from jcvi.compara.synteny import AnchorFile, check_beds
    from jcvi.formats.bed import Bed
    from jcvi.formats.base import get_number

    p = OptionParser(bed.__doc__)
    p.add_option("--switch", default=False, action="store_true",
                 help="Switch reference and aligned map elements")
    p.add_option("--scale", type="float",
                 help="Scale the aligned map distance by factor")
    p.set_beds()
    p.set_outfile()
    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    anchorsfile, = args
    switch = opts.switch
    scale = opts.scale
    ac = AnchorFile(anchorsfile)
    pairs = defaultdict(list)
    for a, b, block_id in ac.iter_pairs():
        pairs[a].append(b)

    qbed, sbed, qorder, sorder, is_self = check_beds(anchorsfile, p, opts)
    bd = Bed()
    for q in qbed:
        qseqid, qstart, qend, qaccn = q.seqid, q.start, q.end, q.accn
        if qaccn not in pairs:
            continue
        for s in pairs[qaccn]:
            si, s = sorder[s]
            sseqid, sstart, send, saccn = s.seqid, s.start, s.end, s.accn
        if switch:
            qseqid, sseqid = sseqid, qseqid
            qstart, sstart = sstart, qstart
            qend, send = send, qend
            qaccn, saccn = saccn, qaccn
        if scale:
            sstart /= scale
        try:
            newsseqid = get_number(sseqid)
        except ValueError:
            raise ValueError, "`{0}` is on `{1}` with no number to extract".\
                                format(saccn, sseqid)
        bedline = "\t".join(str(x) for x in (qseqid, qstart - 1, qend,
                            "{0}:{1}".format(newsseqid, sstart)))
        bd.add(bedline)

    bd.print_to_file(filename=opts.outfile, sorted=True)
Exemplo n.º 5
0
def scaffold(args):
    """
    %prog scaffold scaffold.fasta synteny.blast synteny.sizes synteny.bed
                         physicalmap.blast physicalmap.sizes physicalmap.bed

    As evaluation of scaffolding, visualize external line of evidences:
    * Plot synteny to an external genome
    * Plot alignments to physical map
    * Plot alignments to genetic map (TODO)

    Each trio defines one panel to be plotted. blastfile defines the matchings
    between the evidences vs scaffolds. Then the evidence sizes, and evidence
    bed to plot dot plots.

    This script will plot a dot in the dot plot in the corresponding location
    the plots are one contig/scaffold per plot.
    """
    from jcvi.graphics.base import set_image_options
    from jcvi.utils.iter import grouper

    p = OptionParser(scaffold.__doc__)
    p.add_option("--cutoff", type="int", default=1000000,
            help="Plot scaffolds with size larger than [default: %default]")
    p.add_option("--highlights",
            help="A set of regions in BED format to highlight [default: %default]")
    opts, args, iopts = set_image_options(p, args, figsize="14x8", dpi=150)

    if len(args) < 4 or len(args) % 3 != 1:
        sys.exit(not p.print_help())

    highlights = opts.highlights
    scafsizes = Sizes(args[0])
    trios = list(grouper(3, args[1:]))
    trios = [(a, Sizes(b), Bed(c)) for a, b, c in trios]
    if highlights:
        hlbed = Bed(highlights)

    for scaffoldID, scafsize in scafsizes.iter_sizes():
        if scafsize < opts.cutoff:
            continue
        logging.debug("Loading {0} (size={1})".format(scaffoldID,
            thousands(scafsize)))

        tmpname = scaffoldID + ".sizes"
        tmp = open(tmpname, "w")
        tmp.write("{0}\t{1}".format(scaffoldID, scafsize))
        tmp.close()

        tmpsizes = Sizes(tmpname)
        tmpsizes.close(clean=True)

        if highlights:
            subhighlights = list(hlbed.sub_bed(scaffoldID))

        imagename = ".".join((scaffoldID, opts.format))
        plot_one_scaffold(scaffoldID, tmpsizes, None, trios, imagename, iopts,
                          highlights=subhighlights)
Exemplo n.º 6
0
def frombed(args):
    """
    %prog frombed bedfile contigfasta readfasta

    Convert read placement to contig format. This is useful before running BAMBUS.
    """
    from jcvi.formats.fasta import Fasta
    from jcvi.formats.bed import Bed
    from jcvi.utils.cbook import fill

    p = OptionParser(frombed.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    bedfile, contigfasta, readfasta = args
    prefix = bedfile.rsplit(".", 1)[0]
    contigfile = prefix + ".contig"
    idsfile = prefix + ".ids"

    contigfasta = Fasta(contigfasta)
    readfasta = Fasta(readfasta)

    bed = Bed(bedfile)
    checksum = "00000000 checksum."
    fw_ids = open(idsfile, "w")
    fw = open(contigfile, "w")

    for ctg, reads in bed.sub_beds():
        ctgseq = contigfasta[ctg]
        ctgline = "##{0} {1} {2} bases, {3}".format(\
                ctg, len(reads), len(ctgseq), checksum)

        print >> fw_ids, ctg
        print >> fw, ctgline
        print >> fw, fill(ctgseq.seq)

        for b in reads:
            read = b.accn
            strand = b.strand
            readseq = readfasta[read]
            rc = " [RC]" if strand == "-" else ""
            readlen = len(readseq)
            rstart, rend = 1, readlen
            if strand == "-":
                rstart, rend = rend, rstart

            readrange = "{{{0} {1}}}".format(rstart, rend)
            conrange = "<{0} {1}>".format(b.start, b.end)
            readline = "#{0}(0){1} {2} bases, {3} {4} {5}".format(\
                    read, rc, readlen, checksum, readrange, conrange)
            print >> fw, readline
            print >> fw, fill(readseq.seq)

    logging.debug("Mapped contigs written to `{0}`.".format(contigfile))
    logging.debug("Contig IDs written to `{0}`.".format(idsfile))
Exemplo n.º 7
0
def write_lst(bedfile):
    pf = op.basename(bedfile).split(".")[0]
    mkdir(pf)
    bed = Bed(bedfile)
    stanza = []
    for seqid, bs in bed.sub_beds():
        fname = op.join(pf, "{0}.lst".format(seqid))
        fw = open(fname, "w")
        for b in bs:
            print >> fw, "{0}{1}".format(b.accn.replace(" ", ""), b.strand)
        stanza.append((seqid, fname))
        fw.close()
    return pf, stanza
Exemplo n.º 8
0
def tips(args):
    """
    %prog tips patchers.bed complements.bed original.fasta backbone.fasta

    Append telomeric sequences based on patchers and complements.
    """
    p = OptionParser(tips.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 4:
        sys.exit(not p.print_help())

    pbedfile, cbedfile, sizesfile, bbfasta = args

    pbed = Bed(pbedfile, sorted=False)
    cbed = Bed(cbedfile, sorted=False)

    complements = dict()
    for object, beds in groupby(cbed, key=lambda x: x.seqid):
        beds = list(beds)
        complements[object] = beds

    sizes = Sizes(sizesfile).mapping
    bbsizes = Sizes(bbfasta).mapping
    tbeds = []

    for object, beds in groupby(pbed, key=lambda x: x.accn):
        beds = list(beds)
        startbed, endbed = beds[0], beds[-1]
        start_id, end_id = startbed.seqid, endbed.seqid
        if startbed.start == 1:
            start_id = None
        if endbed.end == sizes[end_id]:
            end_id = None
        print >> sys.stderr, object, start_id, end_id
        if start_id:
            b = complements[start_id][0]
            b.accn = object
            tbeds.append(b)
        tbeds.append(BedLine("\t".join(str(x) for x in \
                        (object, 0, bbsizes[object], object, 1000, "+"))))
        if end_id:
            b = complements[end_id][-1]
            b.accn = object
            tbeds.append(b)

    tbed = Bed()
    tbed.extend(tbeds)

    tbedfile = "tips.bed"
    tbed.print_to_file(tbedfile)
Exemplo n.º 9
0
Arquivo: agp.py Projeto: bennyyu/jcvi
def liftover(args):
    """
    %prog liftover agpfile bedfile

    Given coordinates in components, convert to the coordinates in chromosomes.
    """
    p = OptionParser(liftover.__doc__)
    p.add_option("--prefix", default=False, action="store_true",
                 help="Prepend prefix to accn names [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(p.print_help())

    agpfile, bedfile = args
    agp = AGP(agpfile).order
    bed = Bed(bedfile)
    newbed = Bed()
    for b in bed:
        component = b.seqid
        if component not in agp:
            newbed.append(b)
            continue

        i, a = agp[component]

        assert a.component_beg < a.component_end
        arange = a.component_beg, a.component_end
        assert b.start < b.end
        brange = b.start, b.end

        st = range_intersect(arange, brange)
        if not st:
            continue
        start, end = st
        assert start <= end

        if a.orientation == '-':
            d = a.object_end + a.component_beg
            s, t = d - end, d - start
        else:
            d = a.object_beg - a.component_beg
            s, t = d + start, d + end

        name = b.accn.replace(" ", "_")
        if opts.prefix:
            name = component + "_" + name
        bline = "\t".join(str(x) for x in (a.object, s - 1, t, name))
        newbed.append(BedLine(bline))

    newbed.sort(key=newbed.nullkey)
    newbed.print_to_file()
Exemplo n.º 10
0
def merge(args):
    """
    %prog merge map1 map2 map3 ...

    Convert csv maps to bed format.

    Each input map is csv formatted, for example:

    ScaffoldID,ScaffoldPosition,LinkageGroup,GeneticPosition
    scaffold_2707,11508,1,0
    scaffold_2707,11525,1,1.2
    scaffold_759,81336,1,9.7
    """
    p = OptionParser(merge.__doc__)
    p.add_option("-w", "--weightsfile", default="weights.txt",
                 help="Write weights to file")
    p.set_outfile("out.bed")
    opts, args = p.parse_args(args)

    if len(args) < 1:
        sys.exit(not p.print_help())

    maps = args
    outfile = opts.outfile
    fp = must_open(maps)
    b = Bed()
    mapnames = set()
    for row in fp:
        mapname = fp.filename().split(".")[0]
        mapnames.add(mapname)
        try:
            m = CSVMapLine(row, mapname=mapname)
            if m.cm < 0:
                logging.error("Ignore marker with negative genetic distance")
                print >> sys.stderr, row.strip()
            else:
                b.append(BedLine(m.bedline))
        except (IndexError, ValueError):  # header or mal-formed line
            continue

    b.print_to_file(filename=outfile, sorted=True)
    logging.debug("A total of {0} markers written to `{1}`.".\
                        format(len(b), outfile))

    assert len(maps) == len(mapnames), "You have a collision in map names"
    write_weightsfile(mapnames, weightsfile=opts.weightsfile)
Exemplo n.º 11
0
def patcher(args):
    """
    %prog patcher backbone.bed other.bed

    Given optical map alignment, prepare the patchers. Use --backbone to suggest
    which assembly is the major one, and the patchers will be extracted from
    another assembly.
    """
    from jcvi.formats.bed import uniq

    p = OptionParser(patcher.__doc__)
    p.add_option("--backbone", default="OM",
                 help="Prefix of the backbone assembly [default: %default]")
    p.add_option("--object", default="object",
                 help="New object name [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    backbonebed, otherbed = args
    backbonebed = uniq([backbonebed])
    otherbed = uniq([otherbed])

    pf = backbonebed.split(".")[0]
    key = lambda x: (x.seqid, x.start, x.end)

    # Make a uniq bed keeping backbone at redundant intervals
    cmd = "intersectBed -v -wa"
    cmd += " -a {0} -b {1}".format(otherbed, backbonebed)
    outfile = otherbed.rsplit(".", 1)[0] + ".not." + backbonebed
    sh(cmd, outfile=outfile)

    uniqbed = Bed()
    uniqbedfile = pf + ".merged.bed"
    uniqbed.extend(Bed(backbonebed))
    uniqbed.extend(Bed(outfile))
    uniqbed.print_to_file(uniqbedfile, sorted=True)

    # Condense adjacent intervals, allow some chaining
    bed = uniqbed
    key = lambda x: range_parse(x.accn).seqid

    bed_fn = pf + ".patchers.bed"
    bed_fw = open(bed_fn, "w")

    for k, sb in groupby(bed, key=key):
        sb = list(sb)
        chr, start, end, strand = merge_ranges(sb)

        print >> bed_fw, "\t".join(str(x) for x in \
                (chr, start, end, opts.object, 1000, strand))

    bed_fw.close()
Exemplo n.º 12
0
def breakpoint(args):
    """
    %prog breakpoint blastfile bedfile

    Identify breakpoints where collinearity ends. `blastfile` contains mapping
    from markers (query) to scaffolds (subject). `bedfile` contains marker
    locations in the related species.
    """
    from jcvi.formats.blast import bed
    from jcvi.utils.range import range_interleave

    p = OptionParser(breakpoint.__doc__)
    p.add_option("--xdist", type="int", default=20,
                 help="xdist (in related genome) cutoff [default: %default]")
    p.add_option("--ydist", type="int", default=200000,
                 help="ydist (in current genome) cutoff [default: %default]")
    p.add_option("-n", type="int", default=5,
                 help="number of markers in a block [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    blastfile, bedfile = args
    order = Bed(bedfile).order
    blastbedfile = bed([blastfile])
    bbed = Bed(blastbedfile)
    key = lambda x: x[1]
    for scaffold, bs in bbed.sub_beds():
        blocks = get_blocks(scaffold, bs, order,
                            xdist=opts.xdist, ydist=opts.ydist, N=opts.n)
        sblocks = []
        for block in blocks:
            xx, yy = zip(*block)
            sblocks.append((scaffold, min(yy), max(yy)))
        iblocks = range_interleave(sblocks)
        for ib in iblocks:
            ch, start, end = ib
            print "{0}\t{1}\t{2}".format(ch, start - 1, end)
Exemplo n.º 13
0
def eject(args):
    """
    %prog eject candidates.bed chr.fasta

    Eject scaffolds from assembly, using the range identified by closest().
    """
    p = OptionParser(eject.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    candidates, chrfasta = args
    sizesfile = Sizes(chrfasta).filename
    cbedfile = complementBed(candidates, sizesfile)

    cbed = Bed(cbedfile)
    for b in cbed:
        b.accn = b.seqid
        b.score = 1000
        b.strand = '+'

    cbed.print_to_file()
Exemplo n.º 14
0
def mergebed(args):
    """
    %prog mergebed map1.bed map2.bed map3.bed ...

    Combine bed maps to bed format, adding the map name.
    """
    p = OptionParser(mergebed.__doc__)
    p.add_option("-w", "--weightsfile", default="weights.txt",
                 help="Write weights to file")
    p.set_outfile("out.bed")
    opts, args = p.parse_args(args)

    if len(args) < 1:
        sys.exit(not p.print_help())

    maps = args
    outfile = opts.outfile
    fp = must_open(maps)
    b = Bed()
    mapnames = set()
    for row in fp:
        mapname = fp.filename().split(".")[0]
        mapnames.add(mapname)
        try:
            m = BedLine(row)
            m.accn = "{0}-{1}".format(mapname, m.accn)
            m.extra = ["{0}:{1}".format(m.seqid, m.start)]
            b.append(m)
        except (IndexError, ValueError):  # header or mal-formed line
            continue

    b.print_to_file(filename=outfile, sorted=True)
    logging.debug("A total of {0} markers written to `{1}`.".\
                        format(len(b), outfile))

    assert len(maps) == len(mapnames), "You have a collision in map names"
    write_weightsfile(mapnames, weightsfile=opts.weightsfile)
Exemplo n.º 15
0
def bed(args):
    '''
    %prog bed gff_file [--options]

    Parses the start, stop locations of the selected features out of GFF and
    generate a bed file
    '''
    p = OptionParser(bed.__doc__)
    p.add_option("--type", dest="type", default="gene",
            help="Feature type to extract, use comma for multiple [default: %default]")
    p.add_option("--key", dest="key", default="ID",
            help="Key in the attributes to extract [default: %default]")
    set_outfile(p)

    opts, args = p.parse_args(args)
    if len(args) != 1:
        sys.exit(not p.print_help())

    gffile, = args
    key = opts.key
    if key == "None":
        key = None

    type = set(x.strip() for x in opts.type.split(","))

    gff = Gff(gffile, key=key)
    b = Bed()

    for g in gff:
        if g.type not in type:
            continue

        b.append(g.bedline)

    b.sort(key=b.key)
    b.print_to_file(opts.outfile)
Exemplo n.º 16
0
def rename(args):
    """
    %prog rename genes.bed [gaps.bed]

    Rename genes for annotation release.

    For genes on chromosomes (e.g. the 12th gene on C1):
    Bo1g00120

    For genes on scaffolds (e.g. the 12th gene on unplaced Scaffold00285):
    Bo00285s120

    The genes identifiers will increment by 10. So assuming no gap, these are
    the consecutive genes:
    Bo1g00120, Bo1g00130, Bo1g00140...
    Bo00285s120, Bo00285s130, Bo00285s140...

    When we encounter gaps, we would like the increment to be larger. For example,
    Bo1g00120, <gap>, Bo1g01120...

    Gaps bed file is optional.
    """
    import string

    p = OptionParser(rename.__doc__)
    p.add_option("-a", dest="gene_increment", default=10, type="int",
                 help="Increment for continuous genes [default: %default]")
    p.add_option("-b", dest="gap_increment", default=1000, type="int",
                 help="Increment for gaps [default: %default]")
    p.add_option("--pad0", default=6, type="int",
                 help="Pad gene identifiers with 0 [default: %default]")
    p.add_option("--spad0", default=4, type="int",
                 help="Pad gene identifiers on small scaffolds [default: %default]")
    p.add_option("--prefix", default="Bo",
                 help="Genome prefix [default: %default]")
    p.add_option("--jgi", default=False, action="store_true",
                 help="Create JGI style identifier PREFIX.NN[G|TE]NNNNN.1" + \
                      " [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) not in (1, 2):
        sys.exit(not p.print_help())

    genebed = args[0]
    gapbed = args[1] if len(args) == 2 else None
    prefix = opts.prefix
    gene_increment = opts.gene_increment
    gap_increment = opts.gap_increment

    genes = Bed(genebed)
    if gapbed:
        fp = open(gapbed)
        for row in fp:
            genes.append(BedLine(row))

    genes.sort(key=genes.key)
    idsfile = prefix + ".ids"
    newbedfile = prefix + ".bed"
    gap_increment -= gene_increment
    assert gap_increment >= 0

    if opts.jgi:
        prefix += "."
    fw = open(idsfile, "w")
    for chr, lines in groupby(genes, key=lambda x: x.seqid):
        lines = list(lines)
        pad0 = opts.pad0 if len(lines) > 1000 else opts.spad0
        isChr = chr[0].upper() == 'C'
        digits = "".join(x for x in chr if x in string.digits)
        gs = "g" if isChr else "s"
        pp = prefix + digits + gs
        idx = 0
        if isChr:
            idx += gap_increment

        for r in lines:
            isGap = r.strand not in ("+", "-")
            if isGap:
                idx += gap_increment
                continue
            else:
                idx += gene_increment
            accn = pp + "{0:0{1}d}".format(idx, pad0)
            oldaccn = r.accn
            print >> fw, "\t".join((oldaccn, accn))
            r.accn = accn

    genes.print_to_file(newbedfile)
    logging.debug("Converted IDs written to `{0}`.".format(idsfile))
    logging.debug("Converted bed written to `{0}`.".format(newbedfile))
Exemplo n.º 17
0
def renumber(args):
    """
    %prog renumber Mt35.consolidated.bed > tagged.bed

    Renumber genes for annotation updates.
    """
    from jcvi.algorithms.lis import longest_increasing_subsequence
    from jcvi.utils.grouper import Grouper

    p = OptionParser(renumber.__doc__)
    p.set_annot_reformat_opts()

    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    bedfile, = args

    pf = bedfile.rsplit(".", 1)[0]
    abedfile = pf + ".a.bed"
    bbedfile = pf + ".b.bed"
    if need_update(bedfile, (abedfile, bbedfile)):
        prepare(bedfile)

    mbed = Bed(bbedfile)
    g = Grouper()
    for s in mbed:
        accn = s.accn
        g.join(*accn.split(";"))

    bed = Bed(abedfile)
    for chr, sbed in bed.sub_beds():
        current_chr = chr_number(chr)
        if not current_chr:
            continue

        ranks = []
        gg = set()
        for s in sbed:
            accn = s.accn
            achr, arank = atg_name(accn)
            if achr != current_chr:
                continue
            ranks.append(arank)
            gg.add(accn)

        lranks = longest_increasing_subsequence(ranks)
        print >> sys.stderr, current_chr, len(sbed), "==>", len(ranks), \
                    "==>", len(lranks)

        granks = set(gene_name(current_chr, x, prefix=opts.prefix, \
                     pad0=opts.pad0, uc=opts.uc) for x in lranks) | \
                 set(gene_name(current_chr, x, prefix=opts.prefix, \
                     pad0=opts.pad0, sep="te", uc=opts.uc) for x in lranks)

        tagstore = {}
        for s in sbed:
            achr, arank = atg_name(s.accn)
            accn = s.accn
            if accn in granks:
                tag = (accn, FRAME)
            elif accn in gg:
                tag = (accn, RETAIN)
            else:
                tag = (".", NEW)

            tagstore[accn] = tag

        # Find cases where genes overlap
        for s in sbed:
            accn = s.accn
            gaccn = g[accn]
            tags = [((tagstore[x][-1] if x in tagstore else NEW), x) for x in gaccn]
            group = [(PRIORITY.index(tag), x) for tag, x in tags]
            best = min(group)[-1]

            if accn != best:
                tag = (best, OVERLAP)
            else:
                tag = tagstore[accn]

            print "\t".join((str(s), "|".join(tag)))
Exemplo n.º 18
0
def plot(args):
    """
    %prog plot tagged.new.bed chr1

    Plot gene identifiers along a particular chromosome, often to illustrate the
    gene id assignment procedure.
    """
    from jcvi.graphics.base import plt, savefig
    from jcvi.graphics.chromosome import ChromosomeMap

    p = OptionParser(plot.__doc__)
    p.add_option("--firstn", type="int", help="Only plot the first N genes")
    p.add_option("--ymax", type="int", help="Y-axis max value")
    p.add_option("--log", action="store_true",
                help="Write plotting data [default: %default]")
    opts, args, iopts = p.set_image_options(args, figsize="6x4")

    if len(args) != 2:
        sys.exit(not p.print_help())

    taggedbed, chr = args
    bed = Bed(taggedbed)
    beds = list(bed.sub_bed(chr))
    old, new = [], []
    i = 0
    for b in beds:
        accn = b.extra[0]
        if "te" in accn:
            continue

        accn, tag = accn.split("|")
        if tag == "OVERLAP":
            continue

        c, r = atg_name(accn)
        if tag == "NEW":
            new.append((i, r))
        else:
            old.append((i, r))
        i += 1

    ngenes = i
    assert ngenes == len(new) + len(old)

    logging.debug("Imported {0} ranks on {1}.".format(ngenes, chr))
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    xstart, xend = .2, .8
    ystart, yend = .2, .8
    pad = .02

    ngenes = opts.firstn or ngenes
    ymax = opts.ymax or 500000

    title = "Assignment of Medtr identifiers"
    if opts.ymax:
        subtitle = "{0}, first {1} genes".format(chr, ngenes)
    else:
        subtitle = "{0}, {1} genes ({2} new)".format(chr, ngenes, len(new))

    chr_map = ChromosomeMap(fig, root, xstart, xend, ystart, yend, pad, 0,
                        ymax, 5, title, subtitle)

    ax = chr_map.axes

    if opts.log:
        from jcvi.utils.table import write_csv
        header = ["x", "y"]
        write_csv(header, new, filename=chr + ".new")
        write_csv(header, old, filename=chr + ".old")

    x, y = zip(*new)
    ax.plot(x, y, "b,")
    x, y = zip(*old)
    ax.plot(x, y, "r,")

    # Legends
    ymid = (ystart + yend) / 2
    y = ymid + pad
    root.plot([.2], [y], "r.", lw=2)
    root.text(.2 + pad, y, "Existing Medtr ids", va="center", size=10)
    y = ymid - pad
    root.plot([.2], [y], "b.", lw=2)
    root.text(.2 + pad, y, "Newly instantiated ids", va="center", size=10)

    ax.set_xlim(0, ngenes)
    ax.set_ylim(0, ymax)
    ax.set_axis_off()

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = chr + ".identifiers." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
Exemplo n.º 19
0
Arquivo: agp.py Projeto: bennyyu/jcvi
def mask(args):
    """
    %prog mask agpfile bedfile

    Mask given ranges in componets to gaps.
    """
    p = OptionParser(mask.__doc__)
    p.add_option("--split", default=False, action="store_true",
                 help="Split object and create new names [default: %default]")
    p.add_option("--log", default=False, action="store_true",
                 help="Write verbose logs to .masklog file [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(p.print_help())

    agpfile, bedfile = args
    agp = AGP(agpfile)
    bed = Bed(bedfile)
    simple_agp = agp.order
    # agp lines to replace original ones, keyed by the component
    agp_fixes = defaultdict(list)

    newagpfile = agpfile.replace(".agp", ".masked.agp")
    logfile = bedfile.replace(".bed", ".masklog")
    fw = open(newagpfile, "w")
    if opts.log:
        fwlog = open(logfile, "w")

    for component, intervals in bed.sub_beds():
        if opts.log:
            print >> fwlog, "\n".join(str(x) for x in intervals)
        i, a = simple_agp[component]
        object = a.object
        component_span = a.component_span
        orientation = a.orientation
        if opts.log:
            print >> fwlog, a

        assert a.component_beg, a.component_end
        arange = a.component_beg, a.component_end

        # Make sure `ivs` contain DISJOINT ranges, and located within `arange`
        ivs = []
        for i in intervals:
            iv = range_intersect(arange, (i.start, i.end))
            if iv is not None:
                ivs.append(iv)

        # Sort the ends of `ivs` as well as the arange
        arange = a.component_beg - 1, a.component_end + 1
        endpoints = sorted(flatten(ivs + [arange]))
        # reverse if component on negative strand
        if orientation == '-':
            endpoints.reverse()

        sum_of_spans = 0
        # assign complements as sequence components
        for i, (a, b) in enumerate(pairwise(endpoints)):
            if orientation == '-':
                a, b = b, a
            if orientation not in ('+', '-'):
                orientation = '+'

            oid = object + "_{0}".format(i / 2) if opts.split else object
            aline = [oid, 0, 0, 0]
            if i % 2 == 0:
                cspan = b - a - 1
                aline += ['D', component, a + 1, b - 1, orientation]
                is_gap = False
            else:
                cspan = b - a + 1
                aline += ["N", cspan, "fragment", "yes"]
                is_gap = True
            if cspan <= 0:
                continue

            sum_of_spans += cspan
            aline = "\t".join(str(x) for x in aline)
            if not (opts.split and is_gap):
                agp_fixes[component].append(aline)

            if opts.log:
                print >> fwlog, aline

        assert component_span == sum_of_spans
        if opts.log:
            print >> fwlog

    # Finally write the masked agp
    for a in agp:
        if not a.is_gap and a.component_id in agp_fixes:
            print >> fw, "\n".join(agp_fixes[a.component_id])
        else:
            print >> fw, a

    fw.close()
    # Reindex
    idxagpfile = reindex([newagpfile])
    shutil.move(idxagpfile, newagpfile)

    return newagpfile
Exemplo n.º 20
0
def simple(args):
    """
    %prog simple anchorfile --qbed=qbedfile --sbed=sbedfile [options]

    Write the block ends for each block in the anchorfile.
    GeneA1    GeneA2    GeneB1    GeneB2   +/-      score

    Optional additional columns:
    orderA1   orderA2   orderB1   orderB2  sizeA    sizeB   size    block_id

    With base coordinates (--coords):
    block_id  seqidA    startA    endA     bpSpanA  GeneA1   GeneA2  geneSpanA
    block_id  seqidB    startB    endB     bpSpanB  GeneB1   GeneB2  geneSpanB
    """
    p = OptionParser(simple.__doc__)
    p.add_option("--rich", default=False, action="store_true", \
                help="Output additional columns [default: %default]")
    p.add_option("--coords", default=False, action="store_true",
                help="Output columns with base coordinates [default: %default]")
    p.add_option("--bed", default=False, action="store_true",
                help="Generate BED file for the blocks")
    p.add_option("--noheader", default=False, action="store_true",
                help="Don't output header [default: %default]")
    p.set_beds()
    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    anchorfile, = args
    additional = opts.rich
    coords = opts.coords
    header = not opts.noheader
    bed = opts.bed
    if bed:
        coords = True
        bbed = Bed()

    ac = AnchorFile(anchorfile)
    simplefile = anchorfile.rsplit(".", 1)[0] + ".simple"

    qbed, sbed, qorder, sorder, is_self = check_beds(anchorfile, p, opts)
    pf = "-".join(anchorfile.split(".", 2)[:2])
    blocks = ac.blocks

    if coords:
        h = "Block|Chr|Start|End|Span|StartGene|EndGene|GeneSpan|Orientation"
    else:
        h = "StartGeneA|EndGeneA|StartGeneB|EndGeneB|Orientation|Score"
        if additional:
            h += "|StartOrderA|EndOrderA|StartOrderB|EndOrderB|"\
                  "SizeA|SizeB|Size|Block"

    fws = open(simplefile, "w")
    if header:
        print >> fws, "\t".join(h.split("|"))

    atotalbase = btotalbase = 0
    for i, block in enumerate(blocks):

        a, b, scores = zip(*block)
        a = [qorder[x] for x in a]
        b = [sorder[x] for x in b]
        ia, oa = zip(*a)
        ib, ob = zip(*b)

        astarti, aendi = min(ia), max(ia)
        bstarti, bendi = min(ib), max(ib)
        astart, aend = min(a)[1].accn, max(a)[1].accn
        bstart, bend = min(b)[1].accn, max(b)[1].accn

        sizeA = len(set(ia))
        sizeB = len(set(ib))
        size = len(block)

        slope, intercept = np.polyfit(ia, ib, 1)
        orientation = "+" if slope >= 0 else '-'
        aspan = aendi - astarti + 1
        bspan = bendi - bstarti + 1
        score = int((aspan * bspan) ** .5)
        score = str(score)
        block_id = pf + "-block-{0}".format(i)

        if coords:

            aseqid, astartbase, aendbase = \
                    get_boundary_bases(astart, aend, qorder)
            bseqid, bstartbase, bendbase = \
                    get_boundary_bases(bstart, bend, sorder)
            abase = aendbase - astartbase + 1
            bbase = bendbase - bstartbase + 1
            atotalbase += abase
            btotalbase += bbase

            # Write dual lines
            aargs = [block_id, aseqid, astartbase, aendbase,
                     abase, astart, aend, aspan, "+"]
            bargs = [block_id, bseqid, bstartbase, bendbase,
                     bbase, bstart, bend, bspan, orientation]

            if bed:
                bbed.append(BedLine("\t".join(str(x) for x in \
                           (bseqid, bstartbase - 1, bendbase,
                           "{}:{}-{}".format(aseqid, astartbase, aendbase),
                           size, orientation))))

            for args in (aargs, bargs):
                print >> fws, "\t".join(str(x) for x in args)
            continue

        args = [astart, aend, bstart, bend, score, orientation]
        if additional:
            args += [astarti, aendi, bstarti, bendi,
                     sizeA, sizeB, size, block_id]
        print >> fws, "\t".join(str(x) for x in args)

    fws.close()
    logging.debug("A total of {0} blocks written to `{1}`.".format(i + 1, simplefile))

    if coords:
        print >> sys.stderr, "Total block span in {0}: {1}".format(qbed.filename, \
                        human_size(atotalbase, precision=2))
        print >> sys.stderr, "Total block span in {0}: {1}".format(sbed.filename, \
                        human_size(btotalbase, precision=2))
        print >> sys.stderr, "Ratio: {0:.1f}x".format(\
                        max(atotalbase, btotalbase) * 1. / min(atotalbase, btotalbase))

    if bed:
        bedfile = simplefile + ".bed"
        bbed.print_to_file(filename=bedfile, sorted=True)
        logging.debug("Bed file written to `{}`".format(bedfile))
Exemplo n.º 21
0
def main():
    """
    %prog bedfile id_mappings

    Takes a bedfile that contains the coordinates of features to plot on the
    chromosomes, and `id_mappings` file that map the ids to certain class. Each
    class will get assigned a unique color. `id_mappings` file is optional (if
    omitted, will not paint the chromosome features, except the centromere).
    """
    p = OptionParser(main.__doc__)
    p.add_option("--title", default="Medicago truncatula v3.5",
            help="title of the image [default: `%default`]")
    p.add_option("--gauge", default=False, action="store_true",
            help="draw a gauge with size label [default: %default]")
    p.add_option("--imagemap", default=False, action="store_true",
            help="generate an HTML image map associated with the image [default: %default]")
    p.add_option("--winsize", default=50000, type="int",
            help="if drawing an imagemap, specify the window size (bases) of each map element "
                 "[default: %default bp]")
    opts, args, iopts = set_image_options(p, figsize="6x6", dpi=300)

    if len(args) not in (1, 2):
        sys.exit(p.print_help())

    bedfile = args[0]
    mappingfile = None
    if len(args) == 2:
        mappingfile = args[1]

    winsize = opts.winsize
    imagemap = opts.imagemap
    w, h = iopts.w, iopts.h
    dpi = iopts.dpi

    prefix = bedfile.rsplit(".", 1)[0]
    figname = prefix + "." + opts.format
    if imagemap:
        imgmapfile = prefix + '.map'
        mapfh = open(imgmapfile, "w")
        print >> mapfh, '<map id="' + prefix + '">'

    if mappingfile:
        mappings = dict(x.split() for x in open(mappingfile))
        classes = sorted(set(mappings.values()))
        logging.debug("A total of {0} classes found: {1}".format(len(classes),
            ','.join(classes)))
    else:
        mappings = {}
        classes = []
        logging.debug("No classes registered (no id_mappings given).")

    mycolors = "wrgbymc"
    class_colors = dict(zip(classes, mycolors))

    bed = Bed(bedfile)
    chr_lens = {}
    centromeres = {}
    for b, blines in groupby(bed, key=(lambda x: x.seqid)):
        blines = list(blines)
        maxlen = max(x.end for x in blines)
        chr_lens[b] = maxlen

    for b in bed:
        accn = b.accn
        if accn == "centromere":
            centromeres[b.seqid] = b.start
        if accn in mappings:
            b.accn = mappings[accn]
        else:
            b.accn = '-'

    chr_number = len(chr_lens)
    assert chr_number == len(centromeres)

    fig = plt.figure(1, (w, h))
    root = fig.add_axes([0, 0, 1, 1])

    r = .7  # width and height of the whole chromosome set
    xstart, ystart = .15, .85
    xinterval = r / chr_number
    xwidth = xinterval * .5  # chromosome width
    max_chr_len = max(chr_lens.values())
    ratio = r / max_chr_len  # canvas / base

    # first the chromosomes
    for a, (chr, cent_position) in enumerate(sorted(centromeres.items())):
        clen = chr_lens[chr]
        xx = xstart + a * xinterval + .5 * xwidth
        yy = ystart - cent_position * ratio
        root.text(xx, ystart + .01, _(chr), ha="center")
        ChromosomeWithCentromere(root, xx, ystart, yy,
                ystart - clen * ratio, width=xwidth)

    chr_idxs = dict((a, i) for i, a in enumerate(sorted(chr_lens.keys())))

    alpha = .75
    # color the regions
    for chr in sorted(chr_lens.keys()):
        segment_size, excess = 0, 0
        bac_list = []
        for b in bed.sub_bed(chr):
            clen = chr_lens[chr]
            idx = chr_idxs[chr]
            klass = b.accn
            start = b.start
            end = b.end
            xx = xstart + idx * xinterval
            yystart = ystart - end * ratio
            yyend = ystart - start * ratio
            root.add_patch(Rectangle((xx, yystart), xwidth, yyend - yystart,
                fc=class_colors.get(klass, "w"), lw=0, alpha=alpha))

            if imagemap:
                """
                `segment` : size of current BAC being investigated + `excess`
                `excess`  : left-over bases from the previous BAC, as a result of
                            iterating over `winsize` regions of `segment`
                """
                if excess == 0:
                    segment_start = start
                segment = (end - start + 1) + excess
                while True:
                    if segment < winsize:
                        bac_list.append(b.accn)
                        excess = segment
                        break
                    segment_end = segment_start + winsize - 1
                    tlx, tly, brx, bry = xx, (1 - ystart) + segment_start * ratio, \
                                  xx + xwidth, (1 - ystart) + segment_end * ratio
                    print >> mapfh, '\t' + write_ImageMapLine(tlx, tly, brx, bry, \
                            w, h, dpi, chr+":"+",".join(bac_list), segment_start, segment_end)

                    segment_start += winsize
                    segment -= winsize
                    bac_list = []

        if imagemap and excess > 0:
            bac_list.append(b.accn)
            segment_end = end
            tlx, tly, brx, bry = xx, (1 - ystart) + segment_start * ratio, \
                          xx + xwidth, (1 - ystart) + segment_end * ratio
            print >> mapfh, '\t' + write_ImageMapLine(tlx, tly, brx, bry, \
                    w, h, dpi, chr+":"+",".join(bac_list), segment_start, segment_end)

    if imagemap:
        print >> mapfh, '</map>'
        mapfh.close()
        logging.debug("Image map written to `{0}`".format(mapfh.name))

    if opts.gauge:
        tip = .008  # the ticks on the gauge bar
        extra = .006  # the offset for the unit label
        xstart, ystart = .9, .85
        yy = ystart
        gauge = int(ceil(max_chr_len / 1e6))
        mb = ratio * 1e6
        yinterval = 2 * mb
        root.plot([xstart, xstart], [yy, yy - r], 'b-', lw=2)
        for x in xrange(0, gauge, 2):
            if x % 10:
                root.plot([xstart, xstart + tip], [yy, yy], "b-")
            else:
                root.plot([xstart - tip, xstart + tip], [yy, yy], 'b-', lw=2)
                root.text(xstart + tip + extra, yy, _(x),
                        color="gray", va="center")
            yy -= yinterval
        root.text(xstart, yy - .03, _("Mb"), color="gray", va="center")

    # class legends, four in a row
    xstart = .1
    xinterval = .2
    xwidth = .04
    yy = .08
    for klass, cc in sorted(class_colors.items()):
        if klass == '-':
            continue
        root.add_patch(Rectangle((xstart, yy), xwidth, xwidth, fc=cc, lw=0,
            alpha=alpha))
        root.text(xstart + xwidth + .01, yy, _(klass), fontsize=9)
        xstart += xinterval

    root.text(.5, .95, opts.title, fontstyle="italic", ha="center", va="center")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    plt.savefig(figname, dpi=dpi)
    logging.debug("Figure saved to `{0}` {1}".format(figname, iopts))
Exemplo n.º 22
0
def draw_chromosomes(
    root,
    bedfile,
    sizes,
    iopts,
    mergedist,
    winsize,
    imagemap,
    mappingfile=None,
    gauge=False,
    legend=True,
    empty=False,
    title=None,
):
    bed = Bed(bedfile)
    prefix = bedfile.rsplit(".", 1)[0]

    if imagemap:
        imgmapfile = prefix + ".map"
        mapfh = open(imgmapfile, "w")
        print('<map id="' + prefix + '">', file=mapfh)

    if mappingfile:
        mappings = DictFile(mappingfile, delimiter="\t")
        classes = sorted(set(mappings.values()))
        logging.debug(
            "A total of {0} classes found: {1}".format(len(classes), ",".join(classes))
        )
    else:
        classes = sorted(set(x.accn for x in bed))
        mappings = dict((x, x) for x in classes)

    # Assign colors to classes
    ncolors = max(3, min(len(classes), 12))
    palette = set1_n if ncolors <= 8 else set3_n
    colorset = palette(number=ncolors)
    colorset = sample_N(colorset, len(classes))
    class_colors = dict(zip(classes, colorset))
    logging.debug("Assigned colors: {}".format(class_colors))

    chr_lens = {}
    centromeres = {}
    if sizes:
        chr_lens = Sizes(sizes).sizes_mapping
    else:
        for b, blines in groupby(bed, key=(lambda x: x.seqid)):
            blines = list(blines)
            maxlen = max(x.end for x in blines)
            chr_lens[b] = maxlen

    for b in bed:
        accn = b.accn
        if accn == "centromere":
            centromeres[b.seqid] = b.start
        if accn in mappings:
            b.accn = mappings[accn]
        else:
            b.accn = "-"

    chr_number = len(chr_lens)
    if centromeres:
        assert chr_number == len(
            centromeres
        ), "chr_number = {}, centromeres = {}".format(chr_number, centromeres)

    r = 0.7  # width and height of the whole chromosome set
    xstart, ystart = 0.15, 0.85
    xinterval = r / chr_number
    xwidth = xinterval * 0.5  # chromosome width
    max_chr_len = max(chr_lens.values())
    ratio = r / max_chr_len  # canvas / base

    # first the chromosomes
    for a, (chr, clen) in enumerate(sorted(chr_lens.items())):
        xx = xstart + a * xinterval + 0.5 * xwidth
        root.text(xx, ystart + 0.01, str(get_number(chr)), ha="center")
        if centromeres:
            yy = ystart - centromeres[chr] * ratio
            ChromosomeWithCentromere(
                root, xx, ystart, yy, ystart - clen * ratio, width=xwidth
            )
        else:
            Chromosome(root, xx, ystart, ystart - clen * ratio, width=xwidth)

    chr_idxs = dict((a, i) for i, a in enumerate(sorted(chr_lens.keys())))

    alpha = 1
    # color the regions
    for chr in sorted(chr_lens.keys()):
        segment_size, excess = 0, 0
        bac_list = []
        prev_end, prev_klass = 0, None
        for b in bed.sub_bed(chr):
            clen = chr_lens[chr]
            idx = chr_idxs[chr]
            klass = b.accn
            if klass == "centromere":
                continue
            start = b.start
            end = b.end
            if start < prev_end + mergedist and klass == prev_klass:
                start = prev_end
            xx = xstart + idx * xinterval
            yystart = ystart - end * ratio
            yyend = ystart - start * ratio
            root.add_patch(
                Rectangle(
                    (xx, yystart),
                    xwidth,
                    yyend - yystart,
                    fc=class_colors.get(klass, "lightslategray"),
                    lw=0,
                    alpha=alpha,
                )
            )
            prev_end, prev_klass = b.end, klass

            if imagemap:
                """
                `segment` : size of current BAC being investigated + `excess`
                `excess`  : left-over bases from the previous BAC, as a result of
                            iterating over `winsize` regions of `segment`
                """
                if excess == 0:
                    segment_start = start
                segment = (end - start + 1) + excess
                while True:
                    if segment < winsize:
                        bac_list.append(b.accn)
                        excess = segment
                        break
                    segment_end = segment_start + winsize - 1
                    tlx, tly, brx, bry = (
                        xx,
                        (1 - ystart) + segment_start * ratio,
                        xx + xwidth,
                        (1 - ystart) + segment_end * ratio,
                    )
                    print(
                        "\t"
                        + write_ImageMapLine(
                            tlx,
                            tly,
                            brx,
                            bry,
                            iopts.w,
                            iopts.h,
                            iopts.dpi,
                            chr + ":" + ",".join(bac_list),
                            segment_start,
                            segment_end,
                        ),
                        file=mapfh,
                    )

                    segment_start += winsize
                    segment -= winsize
                    bac_list = []

        if imagemap and excess > 0:
            bac_list.append(b.accn)
            segment_end = end
            tlx, tly, brx, bry = (
                xx,
                (1 - ystart) + segment_start * ratio,
                xx + xwidth,
                (1 - ystart) + segment_end * ratio,
            )
            print(
                "\t"
                + write_ImageMapLine(
                    tlx,
                    tly,
                    brx,
                    bry,
                    iopts.w,
                    iopts.h,
                    iopts.dpi,
                    chr + ":" + ",".join(bac_list),
                    segment_start,
                    segment_end,
                ),
                file=mapfh,
            )

    if imagemap:
        print("</map>", file=mapfh)
        mapfh.close()
        logging.debug("Image map written to `{0}`".format(mapfh.name))

    if gauge:
        xstart, ystart = 0.9, 0.85
        Gauge(root, xstart, ystart - r, ystart, max_chr_len)

    if "centromere" in class_colors:
        del class_colors["centromere"]

    # class legends, four in a row
    if legend:
        xstart = 0.1
        xinterval = 0.8 / len(class_colors)
        xwidth = 0.04
        yy = 0.08
        for klass, cc in sorted(class_colors.items()):
            if klass == "-":
                continue
            root.add_patch(
                Rectangle((xstart, yy), xwidth, xwidth, fc=cc, lw=0, alpha=alpha)
            )
            root.text(xstart + xwidth + 0.01, yy, latex(klass), fontsize=10)
            xstart += xinterval

    if empty:
        root.add_patch(Rectangle((xstart, yy), xwidth, xwidth, fill=False, lw=1))
        root.text(xstart + xwidth + 0.01, yy, empty, fontsize=10)

    if title:
        root.text(0.5, 0.95, markup(title), ha="center", va="center")
Exemplo n.º 23
0
def annotate(args):
    """
    %prog annotate new.bed old.bed 2> log

    Annotate the `new.bed` with features from `old.bed` for the purpose of
    gene numbering.

    Ambiguity in ID assignment can be resolved by either of the following 2 methods:
    - `alignment`: make use of global sequence alignment score (calculated by `needle`)
    - `overlap`: make use of overlap length (calculated by `intersectBed`)

    Transfer over as many identifiers as possible while following guidelines:
    http://www.arabidopsis.org/portals/nomenclature/guidelines.jsp#editing

    Note: Following RegExp pattern describes the structure of the identifier
    assigned to features in the `new.bed` file.

    new_id_pat = re.compile(r"^\d+\.[cemtx]+\S+")

    Examples: 23231.m312389, 23231.t004898, 23231.tRNA.144
    Adjust the value of `new_id_pat` manually as per your ID naming conventions.
    """
    from jcvi.utils.grouper import Grouper

    valid_resolve_choices = ["alignment", "overlap"]

    p = OptionParser(annotate.__doc__)
    p.add_option("--resolve", default="alignment", choices=valid_resolve_choices,
                 help="Resolve ID assignment based on a certain metric" \
                        + " [default: %default]")
    p.add_option("--atg_name", default=False, action="store_true",
                help="Specify is locus IDs in `new.bed` file follow ATG nomenclature" \
                        + " [default: %default]")

    g1 = OptionGroup(p, "Optional parameters (alignment):\n" \
            + "Use if resolving ambiguities based on sequence `alignment`")
    g1.add_option("--pid",
                  dest="pid",
                  default=35.,
                  type="float",
                  help="Percent identity cutoff [default: %default]")
    g1.add_option("--score",
                  dest="score",
                  default=250.,
                  type="float",
                  help="Alignment score cutoff [default: %default]")
    p.add_option_group(g1)

    g2 = OptionGroup(p, "Optional parameters (overlap):\n" \
            + "Use if resolving ambiguities based on `overlap` length\n" \
            + "Parameters equivalent to `intersectBed`")
    g2.add_option(
        "-f",
        dest="f",
        default=0.5,
        type="float",
        help="Minimum overlap fraction (0.0 - 1.0) [default: %default]")
    g2.add_option(
        "-r",
        dest="r",
        default=False,
        action="store_true",
        help="Require fraction overlap to be reciprocal [default: %default]")
    g2.add_option("-s",
                  dest="s",
                  default=True,
                  action="store_true",
                  help="Require same strandedness [default: %default]")
    p.add_option_group(g2)

    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    nbedfile, obedfile = args
    npf, opf = nbedfile.rsplit(".", 1)[0], obedfile.rsplit(".", 1)[0]

    # Make consolidated.bed
    cbedfile = "consolidated.bed"
    if not os.path.isfile(cbedfile):
        consolidate(nbedfile, obedfile, cbedfile)
    else:
        logging.warning("`{0}` already exists. Skipping step".format(cbedfile))

    logging.warning("Resolving ID assignment ambiguity based on `{0}`".\
            format(opts.resolve))

    if opts.resolve == "alignment":
        # Get pairs and prompt to run needle
        pairsfile = "nw.pairs"
        scoresfile = "nw.scores"
        if not os.path.isfile(pairsfile):
            get_pairs(cbedfile, pairsfile)
        else:
            logging.warning("`{0}` already exists. Checking for needle output".\
                    format(pairsfile))

        # If needle scores do not exist, prompt user to run needle
        if not os.path.isfile(scoresfile):
            logging.error("`{0}` does not exist. Please process {1} using `needle`".\
                    format(scoresfile, pairsfile))
            sys.exit()
    else:
        scoresfile = "ovl.scores"
        # Calculate overlap length using intersectBed
        calculate_ovl(nbedfile, obedfile, opts, scoresfile)

    logging.warning("`{0}' exists. Storing scores in memory".\
            format(scoresfile))
    scores = read_scores(scoresfile, opts)

    # Iterate through consolidated bed and
    # filter piles based on score
    abedline = {}

    cbed = Bed(cbedfile)
    g = Grouper()
    for c in cbed:
        accn = c.accn
        g.join(*accn.split(";"))

    nbedline = {}
    nbed = Bed(nbedfile)
    for line in nbed:
        nbedline[line.accn] = line

    splits = set()
    for chr, chrbed in nbed.sub_beds():
        abedline, splits = annotate_chr(chr, chrbed, g, scores, nbedline,
                                        abedline, opts, splits)

    if splits is not None:
        abedline = process_splits(splits, scores, nbedline, abedline)

    abedfile = npf + ".annotated.bed"
    afh = open(abedfile, "w")
    for accn in abedline:
        print(abedline[accn], file=afh)
    afh.close()

    sort([abedfile, "-i"])
Exemplo n.º 24
0
def renumber(args):
    """
    %prog renumber Mt35.consolidated.bed > tagged.bed

    Renumber genes for annotation updates.
    """
    from jcvi.algorithms.lis import longest_increasing_subsequence
    from jcvi.utils.grouper import Grouper

    p = OptionParser(renumber.__doc__)
    p.set_annot_reformat_opts()

    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    bedfile, = args

    pf = bedfile.rsplit(".", 1)[0]
    abedfile = pf + ".a.bed"
    bbedfile = pf + ".b.bed"
    if need_update(bedfile, (abedfile, bbedfile)):
        prepare(bedfile)

    mbed = Bed(bbedfile)
    g = Grouper()
    for s in mbed:
        accn = s.accn
        g.join(*accn.split(";"))

    bed = Bed(abedfile)
    for chr, sbed in bed.sub_beds():
        current_chr = chr_number(chr)
        if not current_chr:
            continue

        ranks = []
        gg = set()
        for s in sbed:
            accn = s.accn
            achr, arank = atg_name(accn)
            if achr != current_chr:
                continue
            ranks.append(arank)
            gg.add(accn)

        lranks = longest_increasing_subsequence(ranks)
        print(current_chr, len(sbed), "==>", len(ranks), \
                    "==>", len(lranks), file=sys.stderr)

        granks = set(gene_name(current_chr, x, prefix=opts.prefix, \
                     pad0=opts.pad0, uc=opts.uc) for x in lranks) | \
                 set(gene_name(current_chr, x, prefix=opts.prefix, \
                     pad0=opts.pad0, sep="te", uc=opts.uc) for x in lranks)

        tagstore = {}
        for s in sbed:
            achr, arank = atg_name(s.accn)
            accn = s.accn
            if accn in granks:
                tag = (accn, FRAME)
            elif accn in gg:
                tag = (accn, RETAIN)
            else:
                tag = (".", NEW)

            tagstore[accn] = tag

        # Find cases where genes overlap
        for s in sbed:
            accn = s.accn
            gaccn = g[accn]
            tags = [((tagstore[x][-1] if x in tagstore else NEW), x)
                    for x in gaccn]
            group = [(PRIORITY.index(tag), x) for tag, x in tags]
            best = min(group)[-1]

            if accn != best:
                tag = (best, OVERLAP)
            else:
                tag = tagstore[accn]

            print("\t".join((str(s), "|".join(tag))))
Exemplo n.º 25
0
def instantiate(args):
    """
    %prog instantiate tagged.bed blacklist.ids big_gaps.bed

    instantiate NEW genes tagged by renumber.
    """
    p = OptionParser(instantiate.__doc__)
    p.set_annot_reformat_opts()
    p.add_option("--extended_stride",
                 default=False,
                 action="store_true",
                 help="Toggle extended strides for gene numbering")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    taggedbed, blacklist, gapsbed = args
    r = NameRegister(prefix=opts.prefix, pad0=opts.pad0, uc=opts.uc)
    r.get_blacklist(blacklist)
    r.get_gaps(gapsbed)

    # Run through the bed, identify stretch of NEW ids to instantiate,
    # identify the flanking FRAMEs, interpolate!
    bed = Bed(taggedbed)
    outputbed = taggedbed.rsplit(".", 1)[0] + ".new.bed"
    fw = open(outputbed, "w")

    tagkey = lambda x: x.rsplit("|", 1)[-1]
    for chr, sbed in bed.sub_beds():
        current_chr = chr_number(chr)
        if not current_chr:
            continue

        sbed = list(sbed)

        ranks = []
        for i, s in enumerate(sbed):
            nametag = s.extra[0]
            tag = tagkey(nametag)

            if tag in (NEW, FRAME):
                ranks.append((i, nametag))

        blocks = []
        for tag, names in groupby(ranks, key=lambda x: tagkey(x[-1])):
            names = list(names)
            if tag == NEW:
                blocks.append((tag, [sbed[x[0]] for x in names]))
            else:
                start, end = names[0][-1], names[-1][-1]
                start, end = atg_name(start,
                                      retval="rank"), atg_name(end,
                                                               retval="rank")
                blocks.append((tag, [start, end]))

        id_table = {}  # old to new name conversion
        for i, (tag, info) in enumerate(blocks):
            if tag != NEW:
                continue

            start_id = 0 if i == 0 else blocks[i - 1][1][-1]
            end_id = start_id + 10000 if i == len(blocks) -1 \
                        else blocks[i + 1][1][0]

            r.allocate(info,
                       chr,
                       start_id,
                       end_id,
                       id_table,
                       extended_stride=opts.extended_stride)

        # Output new names
        for i, s in enumerate(sbed):
            nametag = s.extra[0]
            name, tag = nametag.split("|")

            if tag == NEW:
                assert name == '.'
                name = id_table[s.accn]
            elif tag == OVERLAP:
                if name in id_table:
                    name = id_table[name]

            s.extra[0] = "|".join((name, tag))
            print(s, file=fw)

    fw.close()
Exemplo n.º 26
0
def plot(args):
    """
    %prog plot tagged.new.bed chr1

    Plot gene identifiers along a particular chromosome, often to illustrate the
    gene id assignment procedure.
    """
    from jcvi.graphics.base import plt, savefig
    from jcvi.graphics.chromosome import ChromosomeMap

    p = OptionParser(plot.__doc__)
    p.add_option("--firstn", type="int", help="Only plot the first N genes")
    p.add_option("--ymax", type="int", help="Y-axis max value")
    p.add_option("--log",
                 action="store_true",
                 help="Write plotting data [default: %default]")
    opts, args, iopts = p.set_image_options(args, figsize="6x4")

    if len(args) != 2:
        sys.exit(not p.print_help())

    taggedbed, chr = args
    bed = Bed(taggedbed)
    beds = list(bed.sub_bed(chr))
    old, new = [], []
    i = 0
    for b in beds:
        accn = b.extra[0]
        if "te" in accn:
            continue

        accn, tag = accn.split("|")
        if tag == "OVERLAP":
            continue

        c, r = atg_name(accn)
        if tag == "NEW":
            new.append((i, r))
        else:
            old.append((i, r))
        i += 1

    ngenes = i
    assert ngenes == len(new) + len(old)

    logging.debug("Imported {0} ranks on {1}.".format(ngenes, chr))
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    xstart, xend = .2, .8
    ystart, yend = .2, .8
    pad = .02

    ngenes = opts.firstn or ngenes
    ymax = opts.ymax or 500000

    title = "Assignment of Medtr identifiers"
    if opts.ymax:
        subtitle = "{0}, first {1} genes".format(chr, ngenes)
    else:
        subtitle = "{0}, {1} genes ({2} new)".format(chr, ngenes, len(new))

    chr_map = ChromosomeMap(fig, root, xstart, xend, ystart, yend, pad, 0,
                            ymax, 5, title, subtitle)

    ax = chr_map.axes

    if opts.log:
        from jcvi.utils.table import write_csv
        header = ["x", "y"]
        write_csv(header, new, filename=chr + ".new")
        write_csv(header, old, filename=chr + ".old")

    x, y = zip(*new)
    ax.plot(x, y, "b,")
    x, y = zip(*old)
    ax.plot(x, y, "r,")

    # Legends
    ymid = (ystart + yend) / 2
    y = ymid + pad
    root.plot([.2], [y], "r.", lw=2)
    root.text(.2 + pad, y, "Existing Medtr ids", va="center", size=10)
    y = ymid - pad
    root.plot([.2], [y], "b.", lw=2)
    root.text(.2 + pad, y, "Newly instantiated ids", va="center", size=10)

    ax.set_xlim(0, ngenes)
    ax.set_ylim(0, ymax)
    ax.set_axis_off()

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = chr + ".identifiers." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
Exemplo n.º 27
0
def heatmap(args):
    """
    %prog heatmap fastafile chr1

    Combine stack plot with heatmap to show abundance of various tracks along
    given chromosome. Need to give multiple beds to --stacks and --heatmaps
    """
    p = OptionParser(heatmap.__doc__)
    p.add_option("--stacks",
                 default="Exons,Introns,DNA_transposons,Retrotransposons",
                 help="Features to plot in stackplot [default: %default]")
    p.add_option("--heatmaps",
                 default="Copia,Gypsy,hAT,Helitron,Introns,Exons",
                 help="Features to plot in heatmaps [default: %default]")
    p.add_option(
        "--meres",
        default=None,
        help="Extra centromere / telomere features [default: %default]")
    add_window_options(p)
    opts, args, iopts = p.set_image_options(args, figsize="8x5")

    if len(args) != 2:
        sys.exit(not p.print_help())

    fastafile, chr = args
    window, shift, subtract = check_window_options(opts)

    stacks = opts.stacks.split(",")
    heatmaps = opts.heatmaps.split(",")
    stackbeds = get_beds(stacks)
    heatmapbeds = get_beds(heatmaps)
    stackbins = get_binfiles(stackbeds, fastafile, shift, subtract=subtract)
    heatmapbins = get_binfiles(heatmapbeds,
                               fastafile,
                               shift,
                               subtract=subtract)

    margin = .06
    inner = .015
    clen = Sizes(fastafile).mapping[chr]

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    # Gauge
    ratio = draw_gauge(root, margin, clen, rightmargin=4 * margin)
    yinterval = .3
    xx = margin
    yy = 1 - margin
    yy -= yinterval
    xlen = clen / ratio
    cc = chr
    if "_" in chr:
        ca, cb = chr.split("_")
        cc = ca[0].upper() + cb

    root.add_patch(Rectangle((xx, yy), xlen, yinterval - inner, color=gray))
    ax = fig.add_axes([xx, yy, xlen, yinterval - inner])

    nbins = get_nbins(clen, shift)

    owindow = clen / 100
    if owindow > window:
        window = owindow / shift * shift

    stackplot(ax, stackbins, nbins, palette, chr, window, shift)
    ax.text(.1,
            .9,
            cc,
            va="top",
            zorder=100,
            transform=ax.transAxes,
            bbox=dict(boxstyle="round", fc="w", alpha=.5))

    # Legends
    xx += xlen + .01
    yspace = (yinterval - inner) / (len(stackbins) + 1)
    yy = 1 - margin - yinterval
    for s, p in zip(stacks, palette):
        s = s.replace("_", " ")
        s = Registration.get(s, s)

        yy += yspace
        root.add_patch(Rectangle((xx, yy), inner, inner, color=p, lw=0))
        root.text(xx + 1.5 * inner, yy, s, size=10)

    yh = .05  # Heatmap height
    # Heatmaps
    xx = margin
    yy = 1 - margin - yinterval - inner
    for s, p in zip(heatmaps, heatmapbins):
        s = s.replace("_", " ")
        s = Registration.get(s, s)

        yy -= yh
        m = stackarray(p, chr, window, shift)

        Y = np.array([m, m])
        root.imshow(Y,
                    extent=(xx, xx + xlen, yy, yy + yh - inner),
                    interpolation="nearest",
                    aspect="auto")
        root.text(xx + xlen + .01, yy, s, size=10)

    yy -= yh

    meres = opts.meres
    if meres:
        bed = Bed(meres)
        for b in bed:
            if b.seqid != chr:
                continue
            pos = (b.start + b.end) / 2
            cpos = pos / ratio
            xx = margin + cpos
            accn = b.accn.capitalize()
            root.add_patch(CirclePolygon((xx, yy), radius=.01, fc="m", ec="m"))
            root.text(xx + .014, yy, accn, va="center", color="m")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = chr + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
Exemplo n.º 28
0
def composite(args):
    """
    %prog composite fastafile chr1

    Combine line plots, feature bars and alt-bars, different data types
    specified in options. Inputs must be BED-formatted. Three types of viz are
    currently supported:

    --lines: traditional line plots, useful for plotting feature freq
    --bars: show where the extent of features are
    --altbars: similar to bars, yet in two alternating tracks, e.g. scaffolds
    """
    from jcvi.graphics.chromosome import HorizontalChromosome

    p = OptionParser(composite.__doc__)
    p.add_option("--lines",
                 help="Features to plot in lineplot [default: %default]")
    p.add_option("--bars", help="Features to plot in bars [default: %default]")
    p.add_option("--altbars",
                 help="Features to plot in alt-bars [default: %default]")
    p.add_option(
        "--fatten",
        default=False,
        action="store_true",
        help="Help visualize certain narrow features [default: %default]")
    p.add_option("--mode",
                 default="span",
                 choices=("span", "count", "score"),
                 help="Accumulate feature based on [default: %default]")
    add_window_options(p)
    opts, args, iopts = p.set_image_options(args, figsize="8x5")

    if len(args) != 2:
        sys.exit(not p.print_help())

    fastafile, chr = args
    window, shift, subtract = check_window_options(opts)
    linebeds, barbeds, altbarbeds = [], [], []
    fatten = opts.fatten
    if opts.lines:
        lines = opts.lines.split(",")
        linebeds = get_beds(lines)
    if opts.bars:
        bars = opts.bars.split(",")
        barbeds = get_beds(bars)
    if opts.altbars:
        altbars = opts.altbars.split(",")
        altbarbeds = get_beds(altbars)

    linebins = get_binfiles(linebeds, fastafile, shift, mode=opts.mode)

    margin = .12
    clen = Sizes(fastafile).mapping[chr]
    nbins = get_nbins(clen, shift)

    plt.rcParams["xtick.major.size"] = 0
    plt.rcParams["ytick.major.size"] = 0

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    root.text(.5, .95, chr, ha="center", color="darkslategray")

    xstart, xend = margin, 1 - margin
    xlen = xend - xstart
    ratio = xlen / clen
    # Line plots
    ax = fig.add_axes([xstart, .6, xlen, .3])
    lineplot(ax, linebins, nbins, chr, window, shift)

    # Bar plots
    yy = .5
    yinterval = .08
    xs = lambda x: xstart + ratio * x
    r = .01
    fattend = .0025
    for bb in barbeds:
        root.text(xend + .01, yy, bb.split(".")[0], va="center")
        HorizontalChromosome(root, xstart, xend, yy, height=.02)
        bb = Bed(bb)
        for b in bb:
            start, end = xs(b.start), xs(b.end)
            span = end - start
            if fatten and span < fattend:
                span = fattend

            root.add_patch(Rectangle((start, yy - r), span, 2 * r, \
                            lw=0, fc="darkslategray"))
        yy -= yinterval

    # Alternative bar plots
    offset = r / 2
    for bb in altbarbeds:
        root.text(xend + .01, yy, bb.split(".")[0], va="center")
        bb = Bed(bb)
        for i, b in enumerate(bb):
            start, end = xs(b.start), xs(b.end)
            span = end - start
            if span < .0001:
                continue
            offset = -offset
            root.add_patch(Rectangle((start, yy + offset), end - start, .003, \
                            lw=0, fc="darkslategray"))
        yy -= yinterval

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = chr + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
Exemplo n.º 29
0
def tandem_main(blast_file, cds_file, bed_file, N=3, P=50, is_self=True, \
    evalue=.01, strip_name=".", ofile=sys.stderr, genefam=False):

    if genefam:
        N = 1e5

    # get the sizes for the CDS first
    f = Fasta(cds_file)
    sizes = dict(f.itersizes())

    # retrieve the locations
    bed = Bed(bed_file)
    order = bed.order

    if is_self:
        # filter the blast file
        g = Grouper()
        fp = open(blast_file)
        for row in fp:
            b = BlastLine(row)
            query_len = sizes[b.query]
            subject_len = sizes[b.subject]
            if b.hitlen < min(query_len, subject_len) * P / 100.:
                continue

            query = gene_name(b.query, strip_name)
            subject = gene_name(b.subject, strip_name)
            qi, q = order[query]
            si, s = order[subject]

            if abs(qi - si) <= N and b.evalue <= evalue:
                if genefam:
                    g.join(query, subject)
                elif q.seqid == s.seqid:
                    g.join(query, subject)

    else:
        homologs = Grouper()
        fp = open(blast_file)
        for row in fp:
            b = BlastLine(row)
            query_len = sizes[b.query]
            subject_len = sizes[b.subject]
            if b.hitlen < min(query_len, subject_len) * P / 100.:
                continue
            if b.evalue > evalue:
                continue

            query = gene_name(b.query, strip_name)
            subject = gene_name(b.subject, strip_name)
            homologs.join(query, subject)

        if genefam:
            g = homologs
        else:
            g = Grouper()
            for i, atom in enumerate(bed):
                for x in range(1, N + 1):
                    if all([i-x >= 0, bed[i-x].seqid == atom.seqid, \
                        homologs.joined(bed[i-x].accn, atom.accn)]):
                        leni = sizes[bed[i].accn]
                        lenx = sizes[bed[i - x].accn]
                        if abs(leni - lenx) > max(leni, lenx) * (1 - P / 100.):
                            continue
                        g.join(bed[i - x].accn, atom.accn)

    # dump the grouper
    fw = must_open(ofile, "w")
    ngenes, nfamilies = 0, 0
    families = []
    for group in sorted(g):
        if len(group) >= 2:
            print >> fw, ",".join(sorted(group))
            ngenes += len(group)
            nfamilies += 1
            families.append(sorted(group))

    longest_family = max(families, key=lambda x: len(x))

    # generate reports
    print >> sys.stderr, "Proximal paralogues (dist=%d):" % N
    print >> sys.stderr, "Total %d genes in %d families" % (ngenes, nfamilies)
    print >> sys.stderr, "Longest families (%d): %s" % (
        len(longest_family), ",".join(longest_family))

    return families
Exemplo n.º 30
0
def install(args):
    """
    %prog install patchers.bed patchers.fasta backbone.fasta alt.fasta

    Install patches into backbone, using sequences from alternative assembly.
    The patches sequences are generated via jcvi.assembly.patch.fill().

    The output is a bedfile that can be converted to AGP using
    jcvi.formats.agp.frombed().
    """
    from jcvi.apps.align import blast
    from jcvi.formats.fasta import SeqIO

    p = OptionParser(install.__doc__)
    p.set_rclip(rclip=1)
    p.add_option("--maxsize", default=300000, type="int",
            help="Maximum size of patchers to be replaced [default: %default]")
    p.add_option("--prefix", help="Prefix of the new object [default: %default]")
    p.add_option("--strict", default=False, action="store_true",
            help="Only update if replacement has no gaps [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 4:
        sys.exit(not p.print_help())

    pbed, pfasta, bbfasta, altfasta = args
    maxsize = opts.maxsize  # Max DNA size to replace gap
    rclip = opts.rclip

    blastfile = blast([altfasta, pfasta,"--wordsize=100", "--pctid=99"])
    order = Bed(pbed).order
    beforebed, afterbed = blast_to_twobeds(blastfile, order, rclip=rclip,
                                           maxsize=maxsize)

    beforefasta = fastaFromBed(beforebed, bbfasta, name=True, stranded=True)
    afterfasta = fastaFromBed(afterbed, altfasta, name=True, stranded=True)

    # Exclude the replacements that contain more Ns than before
    ah = SeqIO.parse(beforefasta, "fasta")
    bh = SeqIO.parse(afterfasta, "fasta")
    count_Ns = lambda x: x.seq.count('n') + x.seq.count('N')
    exclude = set()
    for arec, brec in zip(ah, bh):
        an = count_Ns(arec)
        bn = count_Ns(brec)
        if opts.strict:
            if bn == 0:
                continue

        elif bn < an:
            continue

        id = arec.id
        exclude.add(id)

    logging.debug("Ignore {0} updates because of decreasing quality."\
                    .format(len(exclude)))


    abed = Bed(beforebed, sorted=False)
    bbed = Bed(afterbed, sorted=False)
    abed = [x for x in abed if x.accn not in exclude]
    bbed = [x for x in bbed if x.accn not in exclude]

    abedfile = "before.filtered.bed"
    bbedfile = "after.filtered.bed"
    afbed = Bed()
    afbed.extend(abed)
    bfbed = Bed()
    bfbed.extend(bbed)

    afbed.print_to_file(abedfile)
    bfbed.print_to_file(bbedfile)

    shuffle_twobeds(afbed, bfbed, bbfasta, prefix=opts.prefix)
Exemplo n.º 31
0
def rename(args):
    """
    %prog rename genes.bed [gaps.bed]

    Rename genes for annotation release.

    For genes on chromosomes (e.g. the 12th gene on C1):
    Bo1g00120

    For genes on scaffolds (e.g. the 12th gene on unplaced Scaffold00285):
    Bo00285s120

    The genes identifiers will increment by 10. So assuming no gap, these are
    the consecutive genes:
    Bo1g00120, Bo1g00130, Bo1g00140...
    Bo00285s120, Bo00285s130, Bo00285s140...

    When we encounter gaps, we would like the increment to be larger. For example,
    Bo1g00120, <gap>, Bo1g01120...

    Gaps bed file is optional.
    """
    import string

    p = OptionParser(rename.__doc__)
    p.add_option("-a",
                 dest="gene_increment",
                 default=10,
                 type="int",
                 help="Increment for continuous genes [default: %default]")
    p.add_option("-b",
                 dest="gap_increment",
                 default=1000,
                 type="int",
                 help="Increment for gaps [default: %default]")
    p.add_option("--pad0",
                 default=6,
                 type="int",
                 help="Pad gene identifiers with 0 [default: %default]")
    p.add_option(
        "--spad0",
        default=4,
        type="int",
        help="Pad gene identifiers on small scaffolds [default: %default]")
    p.add_option("--prefix",
                 default="Bo",
                 help="Genome prefix [default: %default]")
    p.add_option("--jgi", default=False, action="store_true",
                 help="Create JGI style identifier PREFIX.NN[G|TE]NNNNN.1" + \
                      " [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) not in (1, 2):
        sys.exit(not p.print_help())

    genebed = args[0]
    gapbed = args[1] if len(args) == 2 else None
    prefix = opts.prefix
    gene_increment = opts.gene_increment
    gap_increment = opts.gap_increment

    genes = Bed(genebed)
    if gapbed:
        fp = open(gapbed)
        for row in fp:
            genes.append(BedLine(row))

    genes.sort(key=genes.key)
    idsfile = prefix + ".ids"
    newbedfile = prefix + ".bed"
    gap_increment -= gene_increment
    assert gap_increment >= 0

    if opts.jgi:
        prefix += "."
    fw = open(idsfile, "w")
    for chr, lines in groupby(genes, key=lambda x: x.seqid):
        lines = list(lines)
        pad0 = opts.pad0 if len(lines) > 1000 else opts.spad0
        isChr = chr[0].upper() == 'C'
        digits = "".join(x for x in chr if x in string.digits)
        gs = "g" if isChr else "s"
        pp = prefix + digits + gs
        idx = 0
        if isChr:
            idx += gap_increment

        for r in lines:
            isGap = r.strand not in ("+", "-")
            if isGap:
                idx += gap_increment
                continue
            else:
                idx += gene_increment
            accn = pp + "{0:0{1}d}".format(idx, pad0)
            oldaccn = r.accn
            print("\t".join((oldaccn, accn)), file=fw)
            r.accn = accn

    genes.print_to_file(newbedfile)
    logging.debug("Converted IDs written to `{0}`.".format(idsfile))
    logging.debug("Converted bed written to `{0}`.".format(newbedfile))
Exemplo n.º 32
0
def cluster(args):
    """
    %prog cluster blastfile anchorfile --qbed qbedfile --sbed sbedfile

    Cluster the segments and form PAD. This is the method described in Tang et
    al. (2010) PNAS paper. The anchorfile defines a list of synteny blocks,
    based on which the genome on one or both axis can be chopped up into pieces
    and clustered.
    """
    from jcvi.utils.range import Range

    p = OptionParser(cluster.__doc__)
    p.set_beds()
    p.add_option("--minsize",
                 default=10,
                 type="int",
                 help="Only segment using blocks >= size [default: %default]")
    p.add_option("--path",
                 default="~/scratch/bin",
                 help="Path to the CLUSTER 3.0 binary [default: %default]")

    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    blastfile, anchorfile = args
    qbed, sbed, qorder, sorder, is_self = check_beds(blastfile, p, opts)

    minsize = opts.minsize
    ac = AnchorFile(anchorfile)
    qranges, sranges = [], []
    qextra = [x[1:] for x in qbed.get_breaks()]
    sextra = [x[1:] for x in sbed.get_breaks()]

    id = 0
    for block in ac.iter_blocks(minsize=minsize):
        q, s = zip(*block)[:2]
        q = [qorder[x][0] for x in q]
        s = [sorder[x][0] for x in s]
        minq, maxq = min(q), max(q)
        mins, maxs = min(s), max(s)
        id += 1

        qr = Range("0", minq, maxq, maxq - minq, id)
        sr = Range("0", mins, maxs, maxs - mins, id)
        qranges.append(qr)
        sranges.append(sr)

    qpads = list(get_segments(qranges, qextra))
    spads = list(get_segments(sranges, sextra))

    suffix = ".pad.bed"
    qpf = opts.qbed.split(".")[0]
    spf = opts.sbed.split(".")[0]
    qpadfile = qpf + suffix
    spadfile = spf + suffix
    qnpads, qpadnames = write_PAD_bed(qpadfile, qpf, qpads, qbed)
    snpads, spadnames = write_PAD_bed(spadfile, spf, spads, sbed)

    qpadbed, spadbed = Bed(qpadfile), Bed(spadfile)

    logmp = make_arrays(blastfile, qpadbed, spadbed, qpadnames, spadnames)
    m, n = logmp.shape

    matrixfile = ".".join((qpf, spf, "logmp.txt"))
    fw = open(matrixfile, "w")
    header = ["o"] + spadnames
    print("\t".join(header), file=fw)
    for i in xrange(m):
        row = [qpadnames[i]] + ["{0:.1f}".format(x) for x in logmp[i, :]]
        print("\t".join(row), file=fw)

    fw.close()

    # Run CLUSTER 3.0 (Pearson correlation, average linkage)
    cmd = op.join(opts.path, "cluster")
    cmd += " -g 2 -e 2 -m a -f {0}".format(matrixfile)
    pf = matrixfile.rsplit(".", 1)[0]
    cdtfile = pf + ".cdt"
    if need_update(matrixfile, cdtfile):
        sh(cmd)
Exemplo n.º 33
0
def refine(args):
    """
    %prog refine breakpoints.bed gaps.bed

    Find gaps within or near breakpoint region.

    For breakpoint regions with no gaps, there are two options:
    - Break in the middle of the region
    - Break at the closest gap (--closest)
    """
    p = OptionParser(refine.__doc__)
    p.add_option("--closest", default=False, action="store_true",
                 help="In case of no gaps, use closest [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    breakpointsbed, gapsbed = args
    ncols = len(open(breakpointsbed).next().split())
    logging.debug("File {0} contains {1} columns.".format(breakpointsbed, ncols))
    cmd = "intersectBed -wao -a {0} -b {1}".format(breakpointsbed, gapsbed)

    pf = "{0}.{1}".format(breakpointsbed.split(".")[0], gapsbed.split(".")[0])
    ingapsbed = pf + ".bed"
    sh(cmd, outfile=ingapsbed)

    fp = open(ingapsbed)
    data = [x.split() for x in fp]

    nogapsbed = pf + ".nogaps.bed"
    largestgapsbed = pf + ".largestgaps.bed"
    nogapsfw = open(nogapsbed, "w")
    largestgapsfw = open(largestgapsbed, "w")
    for b, gaps in groupby(data, key=lambda x: x[:ncols]):
        gaps = list(gaps)
        gap = gaps[0]
        if len(gaps) == 1 and gap[-1] == "0":
            assert gap[-3] == "."
            print >> nogapsfw, "\t".join(b)
            continue

        gaps = [(int(x[-1]), x) for x in gaps]
        maxgap = max(gaps)[1]
        print >> largestgapsfw, "\t".join(maxgap)

    nogapsfw.close()
    largestgapsfw.close()
    beds = [largestgapsbed]
    toclean = [nogapsbed, largestgapsbed]

    if opts.closest:
        closestgapsbed = pf + ".closestgaps.bed"
        cmd = "closestBed -a {0} -b {1} -d".format(nogapsbed, gapsbed)
        sh(cmd, outfile=closestgapsbed)
        beds += [closestgapsbed]
        toclean += [closestgapsbed]
    else:
        pointbed = pf + ".point.bed"
        pbed = Bed()
        bed = Bed(nogapsbed)
        for b in bed:
            pos = (b.start + b.end) / 2
            b.start, b.end = pos, pos
            pbed.append(b)
        pbed.print_to_file(pointbed)
        beds += [pointbed]
        toclean += [pointbed]

    refinedbed = pf + ".refined.bed"
    FileMerger(beds, outfile=refinedbed).merge()

    # Clean-up
    FileShredder(toclean)

    return refinedbed
Exemplo n.º 34
0
def ld(args):
    """
    %prog ld map

    Calculate pairwise linkage disequilibrium given MSTmap.
    """
    import numpy as np
    from random import sample

    from jcvi.algorithms.matrix import symmetrize

    p = OptionParser(ld.__doc__)
    p.add_option("--subsample", default=500, type="int",
                 help="Subsample markers to speed up [default: %default]")
    opts, args, iopts = p.set_image_options(args, figsize="8x8")

    if len(args) != 1:
        sys.exit(not p.print_help())

    mstmap, = args
    subsample = opts.subsample
    data = MSTMap(mstmap)
    # Take random subsample while keeping marker order
    if subsample < data.nmarkers:
        data = [data[x] for x in \
                sorted(sample(xrange(len(data)), subsample))]

    markerbedfile = mstmap + ".subsample.bed"
    ldmatrix = mstmap + ".subsample.matrix"

    if need_update(mstmap, (markerbedfile, ldmatrix)):
        nmarkers = len(data)
        fw = open(markerbedfile, "w")
        print >> fw, "\n".join(x.bedline for x in data)
        logging.debug("Write marker set of size {0} to file `{1}`."\
                        .format(nmarkers, markerbedfile))

        M = np.zeros((nmarkers, nmarkers), dtype=float)
        for i, j in combinations(range(nmarkers), 2):
            a = data[i]
            b = data[j]
            M[i, j] = calc_ldscore(a.genotype, b.genotype)

        M = symmetrize(M)

        logging.debug("Write LD matrix to file `{0}`.".format(ldmatrix))
        M.tofile(ldmatrix)
    else:
        nmarkers = len(Bed(markerbedfile))
        M = np.fromfile(ldmatrix, dtype="float").reshape(nmarkers, nmarkers)
        logging.debug("LD matrix `{0}` exists ({1}x{1})."\
                        .format(ldmatrix, nmarkers))

    from jcvi.graphics.base import plt, savefig, Rectangle, draw_cmap

    plt.rcParams["axes.linewidth"] = 0

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])
    ax = fig.add_axes([.1, .1, .8, .8])  # the heatmap

    ax.matshow(M, cmap=iopts.cmap)

    # Plot chromosomes breaks
    bed = Bed(markerbedfile)
    xsize = len(bed)
    extent = (0, nmarkers)
    chr_labels = []
    ignore_size = 20

    for (seqid, beg, end) in bed.get_breaks():
        ignore = abs(end - beg) < ignore_size
        pos = (beg + end) / 2
        chr_labels.append((seqid, pos, ignore))
        if ignore:
            continue
        ax.plot((end, end), extent, "w-", lw=1)
        ax.plot(extent, (end, end), "w-", lw=1)

    # Plot chromosome labels
    for label, pos, ignore in chr_labels:
        pos = .1 + pos * .8 / xsize
        if not ignore:
            root.text(pos, .91, label,
                ha="center", va="bottom", rotation=45, color="grey")
            root.text(.09, pos, label,
                ha="right", va="center", color="grey")

    ax.set_xlim(extent)
    ax.set_ylim(extent)
    ax.set_axis_off()

    draw_cmap(root, "Pairwise LD (r2)", 0, 1, cmap=default_cm)

    root.add_patch(Rectangle((.1, .1), .8, .8, fill=False, ec="k", lw=2))
    m = mstmap.split(".")[0]
    root.text(.5, .06, "Linkage Disequilibrium between {0} markers".format(m), ha="center")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = m + ".subsample" + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
Exemplo n.º 35
0
def install(args):
    """
    %prog install patchers.bed patchers.fasta backbone.fasta alt.fasta

    Install patches into backbone, using sequences from alternative assembly.
    The patches sequences are generated via jcvi.assembly.patch.fill().

    The output is a bedfile that can be converted to AGP using
    jcvi.formats.agp.frombed().
    """
    from jcvi.apps.align import blast
    from jcvi.formats.fasta import SeqIO

    p = OptionParser(install.__doc__)
    p.set_rclip(rclip=1)
    p.add_option("--maxsize", default=300000, type="int",
            help="Maximum size of patchers to be replaced [default: %default]")
    p.add_option("--prefix", help="Prefix of the new object [default: %default]")
    p.add_option("--strict", default=False, action="store_true",
            help="Only update if replacement has no gaps [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 4:
        sys.exit(not p.print_help())

    pbed, pfasta, bbfasta, altfasta = args
    maxsize = opts.maxsize  # Max DNA size to replace gap
    rclip = opts.rclip

    blastfile = blast([altfasta, pfasta,"--wordsize=100", "--pctid=99"])
    order = Bed(pbed).order
    beforebed, afterbed = blast_to_twobeds(blastfile, order, rclip=rclip,
                                           maxsize=maxsize)

    beforefasta = fastaFromBed(beforebed, bbfasta, name=True, stranded=True)
    afterfasta = fastaFromBed(afterbed, altfasta, name=True, stranded=True)

    # Exclude the replacements that contain more Ns than before
    ah = SeqIO.parse(beforefasta, "fasta")
    bh = SeqIO.parse(afterfasta, "fasta")
    count_Ns = lambda x: x.seq.count('n') + x.seq.count('N')
    exclude = set()
    for arec, brec in zip(ah, bh):
        an = count_Ns(arec)
        bn = count_Ns(brec)
        if opts.strict:
            if bn == 0:
                continue

        elif bn < an:
            continue

        id = arec.id
        exclude.add(id)

    logging.debug("Ignore {0} updates because of decreasing quality."\
                    .format(len(exclude)))


    abed = Bed(beforebed, sorted=False)
    bbed = Bed(afterbed, sorted=False)
    abed = [x for x in abed if x.accn not in exclude]
    bbed = [x for x in bbed if x.accn not in exclude]

    abedfile = "before.filtered.bed"
    bbedfile = "after.filtered.bed"
    afbed = Bed()
    afbed.extend(abed)
    bfbed = Bed()
    bfbed.extend(bbed)

    afbed.print_to_file(abedfile)
    bfbed.print_to_file(bbedfile)

    shuffle_twobeds(afbed, bfbed, bbfasta, prefix=opts.prefix)
Exemplo n.º 36
0
Arquivo: agp.py Projeto: bennyyu/jcvi
def cut(args):
    """
    %prog cut agpfile bedfile

    Cut at the boundaries of the ranges in the bedfile. Use --shrink to control
    the exact boundaries where you cut.
    """
    p = OptionParser(cut.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    agpfile, bedfile = args
    agp = AGP(agpfile)
    bed = Bed(bedfile)
    simple_agp = agp.order
    newagpfile = agpfile.replace(".agp", ".cut.agp")
    fw = open(newagpfile, "w")

    agp_fixes = defaultdict(list)
    for component, intervals in bed.sub_beds():
        i, a = simple_agp[component]
        object = a.object
        component_span = a.component_span
        orientation = a.orientation

        assert a.component_beg, a.component_end
        arange = a.component_beg, a.component_end

        cuts = set()
        for i in intervals:
            start, end = i.start, i.end
            end -= 1

            assert start <= end
            cuts.add(start)
            cuts.add(end)

        cuts.add(0)
        cuts.add(component_span)
        cuts = list(sorted(cuts))

        sum_of_spans = 0
        for i, (a, b) in enumerate(pairwise(cuts)):
            oid = object + "_{0}".format(i)
            aline = [oid, 0, 0, 0]
            cspan = b - a
            aline += ['D', component, a + 1, b, orientation]
            sum_of_spans += cspan

            aline = "\t".join(str(x) for x in aline)
            agp_fixes[component].append(aline)

        assert component_span == sum_of_spans

    # Finally write the masked agp
    for a in agp:
        if not a.is_gap and a.component_id in agp_fixes:
            print >> fw, "\n".join(agp_fixes[a.component_id])
        else:
            print >> fw, a

    fw.close()
    # Reindex
    idxagpfile = reindex([newagpfile])
    shutil.move(idxagpfile, newagpfile)

    return newagpfile
Exemplo n.º 37
0
def shuffle_twobeds(afbed, bfbed, bbfasta, prefix=None):
    # Shuffle the two bedfiles together
    sz = Sizes(bbfasta)
    sizes = sz.mapping
    shuffled = "shuffled.bed"
    border = bfbed.order

    all = []
    afbed.sort(key=afbed.nullkey)
    totalids = len(sizes)
    pad = int(math.log10(totalids)) + 1
    cj = 0
    seen = set()
    accn = lambda x: "{0}{1:0{2}d}".format(prefix, x, pad)

    for seqid, aa in afbed.sub_beds():
        cj += 1
        abeds, bbeds, beds = [], [], []
        size = sizes[seqid]
        ranges = [(x.seqid, x.start, x.end) for x in aa]
        cranges = range_interleave(ranges, sizes={seqid: size}, empty=True)
        for crange in cranges:
            if crange:
                seqid, start, end = crange
                bedline = "\t".join(str(x) for x in (seqid, start - 1, end))
                abeds.append(BedLine(bedline))
            else:
                abeds.append(None)

        for a in aa:
            gapid = a.accn
            bi, b = border[gapid]
            if a.strand == '-':
                b.extra[1] = b.strand = ('-' if b.strand == '+' else '+')

            bbeds.append(b)

        n_abeds = len(abeds)
        n_bbeds = len(bbeds)
        assert n_abeds - n_bbeds == 1, \
            "abeds: {0}, bbeds: {1}".format(n_abeds, n_bbeds)

        beds = [x for x in roundrobin(abeds, bbeds) if x]
        if prefix:
            for b in beds:
                b.accn = accn(cj)

        all.extend(beds)
        seen.add(seqid)

    # Singletons
    for seqid, size in sz.iter_sizes():
        if seqid in seen:
            continue

        bedline = "\t".join(str(x) for x in (seqid, 0, size, accn(cj)))
        b = BedLine(bedline)

        cj += 1
        if prefix:
            b.accn = accn(cj)

        all.append(b)

    shuffledbed = Bed()
    shuffledbed.extend(all)
    shuffledbed.print_to_file(shuffled)

    return shuffledbed
Exemplo n.º 38
0
def main():
    """
    %prog bedfile id_mappings

    Takes a bedfile that contains the coordinates of features to plot on the
    chromosomes, and `id_mappings` file that map the ids to certain class. Each
    class will get assigned a unique color. `id_mappings` file is optional (if
    omitted, will not paint the chromosome features, except the centromere).
    """
    p = OptionParser(main.__doc__)
    p.add_option("--title", default="Medicago truncatula v3.5",
            help="title of the image [default: `%default`]")
    p.add_option("--gauge", default=False, action="store_true",
            help="draw a gauge with size label [default: %default]")
    p.add_option("--imagemap", default=False, action="store_true",
            help="generate an HTML image map associated with the image [default: %default]")
    p.add_option("--winsize", default=50000, type="int",
            help="if drawing an imagemap, specify the window size (bases) of each map element "
                 "[default: %default bp]")
    p.add_option("--empty", help="Write legend for unpainted region")
    opts, args, iopts = p.set_image_options(figsize="6x6", dpi=300)

    if len(args) not in (1, 2):
        sys.exit(p.print_help())

    bedfile = args[0]
    mappingfile = None
    if len(args) == 2:
        mappingfile = args[1]

    winsize = opts.winsize
    imagemap = opts.imagemap
    w, h = iopts.w, iopts.h
    dpi = iopts.dpi

    prefix = bedfile.rsplit(".", 1)[0]
    figname = prefix + "." + opts.format
    if imagemap:
        imgmapfile = prefix + '.map'
        mapfh = open(imgmapfile, "w")
        print >> mapfh, '<map id="' + prefix + '">'

    if mappingfile:
        mappings = DictFile(mappingfile, delimiter="\t")
        classes = sorted(set(mappings.values()))
        logging.debug("A total of {0} classes found: {1}".format(len(classes),
            ','.join(classes)))
    else:
        mappings = {}
        classes = []
        logging.debug("No classes registered (no id_mappings given).")

    mycolors = "rgbymc"
    class_colors = dict(zip(classes, mycolors))

    bed = Bed(bedfile)
    chr_lens = {}
    centromeres = {}
    for b, blines in groupby(bed, key=(lambda x: x.seqid)):
        blines = list(blines)
        maxlen = max(x.end for x in blines)
        chr_lens[b] = maxlen

    for b in bed:
        accn = b.accn
        if accn == "centromere":
            centromeres[b.seqid] = b.start
        if accn in mappings:
            b.accn = mappings[accn]
        else:
            b.accn = '-'

    chr_number = len(chr_lens)
    if centromeres:
        assert chr_number == len(centromeres)

    fig = plt.figure(1, (w, h))
    root = fig.add_axes([0, 0, 1, 1])

    r = .7  # width and height of the whole chromosome set
    xstart, ystart = .15, .85
    xinterval = r / chr_number
    xwidth = xinterval * .5  # chromosome width
    max_chr_len = max(chr_lens.values())
    ratio = r / max_chr_len  # canvas / base

    # first the chromosomes
    for a, (chr, clen) in enumerate(sorted(chr_lens.items())):
        xx = xstart + a * xinterval + .5 * xwidth
        root.text(xx, ystart + .01, chr, ha="center")
        if centromeres:
            yy = ystart - centromeres[chr] * ratio
            ChromosomeWithCentromere(root, xx, ystart, yy,
                    ystart - clen * ratio, width=xwidth)
        else:
            Chromosome(root, xx, ystart, ystart - clen * ratio, width=xwidth)

    chr_idxs = dict((a, i) for i, a in enumerate(sorted(chr_lens.keys())))

    alpha = .75
    # color the regions
    for chr in sorted(chr_lens.keys()):
        segment_size, excess = 0, 0
        bac_list = []
        for b in bed.sub_bed(chr):
            clen = chr_lens[chr]
            idx = chr_idxs[chr]
            klass = b.accn
            start = b.start
            end = b.end
            xx = xstart + idx * xinterval
            yystart = ystart - end * ratio
            yyend = ystart - start * ratio
            root.add_patch(Rectangle((xx, yystart), xwidth, yyend - yystart,
                fc=class_colors.get(klass, "w"), lw=0, alpha=alpha))

            if imagemap:
                """
                `segment` : size of current BAC being investigated + `excess`
                `excess`  : left-over bases from the previous BAC, as a result of
                            iterating over `winsize` regions of `segment`
                """
                if excess == 0:
                    segment_start = start
                segment = (end - start + 1) + excess
                while True:
                    if segment < winsize:
                        bac_list.append(b.accn)
                        excess = segment
                        break
                    segment_end = segment_start + winsize - 1
                    tlx, tly, brx, bry = xx, (1 - ystart) + segment_start * ratio, \
                                  xx + xwidth, (1 - ystart) + segment_end * ratio
                    print >> mapfh, '\t' + write_ImageMapLine(tlx, tly, brx, bry, \
                            w, h, dpi, chr+":"+",".join(bac_list), segment_start, segment_end)

                    segment_start += winsize
                    segment -= winsize
                    bac_list = []

        if imagemap and excess > 0:
            bac_list.append(b.accn)
            segment_end = end
            tlx, tly, brx, bry = xx, (1 - ystart) + segment_start * ratio, \
                          xx + xwidth, (1 - ystart) + segment_end * ratio
            print >> mapfh, '\t' + write_ImageMapLine(tlx, tly, brx, bry, \
                    w, h, dpi, chr+":"+",".join(bac_list), segment_start, segment_end)

    if imagemap:
        print >> mapfh, '</map>'
        mapfh.close()
        logging.debug("Image map written to `{0}`".format(mapfh.name))

    if opts.gauge:
        xstart, ystart = .9, .85
        Gauge(root, xstart, ystart - r, ystart, max_chr_len)

    # class legends, four in a row
    xstart = .1
    xinterval = .2
    xwidth = .04
    yy = .08
    for klass, cc in sorted(class_colors.items()):
        if klass == '-':
            continue
        root.add_patch(Rectangle((xstart, yy), xwidth, xwidth, fc=cc, lw=0,
            alpha=alpha))
        root.text(xstart + xwidth + .01, yy, klass, fontsize=10)
        xstart += xinterval

    empty = opts.empty
    if empty:
        root.add_patch(Rectangle((xstart, yy), xwidth, xwidth, fill=False, lw=1))
        root.text(xstart + xwidth + .01, yy, empty, fontsize=10)

    root.text(.5, .95, opts.title, fontstyle="italic", ha="center", va="center")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    savefig(figname, dpi=dpi, iopts=iopts)
Exemplo n.º 39
0
def bed(args):
    """
    %prog bed anchorsfile

    Convert ANCHORS file to BED format.
    """
    from collections import defaultdict
    from jcvi.compara.synteny import AnchorFile, check_beds
    from jcvi.formats.bed import Bed
    from jcvi.formats.base import get_number

    p = OptionParser(bed.__doc__)
    p.add_option(
        "--switch",
        default=False,
        action="store_true",
        help="Switch reference and aligned map elements",
    )
    p.add_option(
        "--scale", type="float", help="Scale the aligned map distance by factor"
    )
    p.set_beds()
    p.set_outfile()
    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    anchorsfile, = args
    switch = opts.switch
    scale = opts.scale
    ac = AnchorFile(anchorsfile)
    pairs = defaultdict(list)
    for a, b, block_id in ac.iter_pairs():
        pairs[a].append(b)

    qbed, sbed, qorder, sorder, is_self = check_beds(anchorsfile, p, opts)
    bd = Bed()
    for q in qbed:
        qseqid, qstart, qend, qaccn = q.seqid, q.start, q.end, q.accn
        if qaccn not in pairs:
            continue
        for s in pairs[qaccn]:
            si, s = sorder[s]
            sseqid, sstart, send, saccn = s.seqid, s.start, s.end, s.accn
        if switch:
            qseqid, sseqid = sseqid, qseqid
            qstart, sstart = sstart, qstart
            qend, send = send, qend
            qaccn, saccn = saccn, qaccn
        if scale:
            sstart /= scale
        try:
            newsseqid = get_number(sseqid)
        except ValueError:
            raise ValueError(
                "`{0}` is on `{1}` with no number to extract".format(saccn, sseqid)
            )
        bedline = "\t".join(
            str(x)
            for x in (qseqid, qstart - 1, qend, "{0}:{1}".format(newsseqid, sstart))
        )
        bd.add(bedline)

    bd.print_to_file(filename=opts.outfile, sorted=True)
Exemplo n.º 40
0
def instantiate(args):
    """
    %prog instantiate tagged.bed blacklist.ids big_gaps.bed

    instantiate NEW genes tagged by renumber.
    """
    p = OptionParser(instantiate.__doc__)
    p.set_annot_reformat_opts()
    p.add_option("--extended_stride", default=False, action="store_true",
                 help="Toggle extended strides for gene numbering")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    taggedbed, blacklist, gapsbed = args
    r = NameRegister(prefix=opts.prefix, pad0=opts.pad0, uc=opts.uc)
    r.get_blacklist(blacklist)
    r.get_gaps(gapsbed)

    # Run through the bed, identify stretch of NEW ids to instantiate,
    # identify the flanking FRAMEs, interpolate!
    bed = Bed(taggedbed)
    outputbed = taggedbed.rsplit(".", 1)[0] + ".new.bed"
    fw = open(outputbed, "w")

    tagkey = lambda x: x.rsplit("|", 1)[-1]
    for chr, sbed in bed.sub_beds():
        current_chr = chr_number(chr)
        if not current_chr:
            continue

        sbed = list(sbed)

        ranks = []
        for i, s in enumerate(sbed):
            nametag = s.extra[0]
            tag = tagkey(nametag)

            if tag in (NEW, FRAME):
                ranks.append((i, nametag))

        blocks = []
        for tag, names in groupby(ranks, key=lambda x: tagkey(x[-1])):
            names = list(names)
            if tag == NEW:
                blocks.append((tag, [sbed[x[0]] for x in names]))
            else:
                start, end = names[0][-1], names[-1][-1]
                start, end = atg_name(start, retval="rank"), atg_name(end, retval="rank")
                blocks.append((tag, [start, end]))

        id_table = {}  # old to new name conversion
        for i, (tag, info) in enumerate(blocks):
            if tag != NEW:
                continue

            start_id = 0 if i == 0 else blocks[i - 1][1][-1]
            end_id = start_id + 10000 if i == len(blocks) -1 \
                        else blocks[i + 1][1][0]

            r.allocate(info, chr, start_id, end_id, id_table, extended_stride=opts.extended_stride)

        # Output new names
        for i, s in enumerate(sbed):
            nametag = s.extra[0]
            name, tag = nametag.split("|")

            if tag == NEW:
                assert name == '.'
                name = id_table[s.accn]
            elif tag == OVERLAP:
                if name in id_table:
                    name = id_table[name]

            s.extra[0] = "|".join((name, tag))
            print >> fw, s

    fw.close()
Exemplo n.º 41
0
def pastegenes(args):
    """
    %prog pastegenes coverage.list old.genes.bed new.genes.bed old.assembly

    Paste in zero or low coverage genes.  For a set of neighboring genes
    missing, add the whole cassette as unplaced scaffolds. For singletons the
    program will try to make a patch.
    """
    from jcvi.formats.base import DictFile
    from jcvi.utils.cbook import gene_name

    p = OptionParser(pastegenes.__doc__)
    p.add_option("--cutoff", default=90, type="int",
                 help="Coverage cutoff to call gene missing [default: %default]")
    p.add_option("--flank", default=2000, type="int",
                 help="Get the seq of size on two ends [default: %default]")
    p.add_option("--maxsize", default=50000, type="int",
            help="Maximum size of patchers to be replaced [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 4:
        sys.exit(not p.print_help())

    coveragefile, oldbed, newbed, oldassembly = args
    cutoff = opts.cutoff
    flank = opts.flank
    maxsize = opts.maxsize

    coverage = DictFile(coveragefile, valuepos=2, cast=float)

    obed = Bed(oldbed)
    order = obed.order
    bed = [x for x in obed if x.accn in coverage]
    key = lambda x: coverage[x.accn] >= cutoff

    extrabed = "extra.bed"
    extendbed = "extend.bed"
    pastebed = "paste.bed"

    fw = open(extrabed, "w")
    fwe = open(extendbed, "w")
    fwp = open(pastebed, "w")
    fw_ids = open(extendbed + ".ids", "w")

    singletons, large, large_genes = 0, 0, 0
    for chr, chrbed in groupby(bed, key=lambda x: x.seqid):
        chrbed = list(chrbed)
        for good, beds in groupby(chrbed, key=key):
            if good:
                continue

            beds = list(beds)
            blocksize = len(set([gene_name(x.accn) for x in beds]))
            if blocksize == 1:
                singletons += 1
                accn = beds[0].accn
                gi, gb = order[accn]
                leftb = obed[gi - 1]
                rightb = obed[gi + 1]
                leftr = leftb.range
                rightr = rightb.range
                cur = gb.range
                distance_to_left, oo = range_distance(leftr, cur)
                distance_to_right, oo = range_distance(cur, rightr)
                span, oo = range_distance(leftr, rightr)

                if distance_to_left <= distance_to_right and \
                   distance_to_left > 0:
                    label = "LEFT"
                else:
                    label = "RIGHT"

                if 0 < span <= maxsize:
                    print >> fwp, "\t".join(str(x) for x in \
                                    (chr, leftb.start, rightb.end, gb.accn))

                print >> fwe, leftb
                print >> fwe, gb
                print >> fwe, rightb
                print >> fwe, "L:{0} R:{1} [{2}]".format(distance_to_left, \
                            distance_to_right, label)
                print >> fw_ids, gb.accn
                continue

            large += 1
            large_genes += blocksize

            ranges = [(x.start, x.end) for x in beds]
            rmin, rmax = range_minmax(ranges)
            rmin -= flank
            rmax += flank

            name = "-".join((beds[0].accn, beds[-1].accn))
            print >> fw, "\t".join(str(x) for x in (chr, rmin - 1, rmax, name))

    fw.close()
    fwe.close()

    extrabed = mergeBed(extrabed, d=flank, nms=True)
    fastaFromBed(extrabed, oldassembly, name=True)
    summary([extrabed])

    logging.debug("Singleton blocks : {0}".format(singletons))
    logging.debug("Large blocks : {0} ({1} genes)".format(large, large_genes))
Exemplo n.º 42
0
def annotate(args):
    """
    %prog annotate new.bed old.bed 2> log

    Annotate the `new.bed` with features from `old.bed` for the purpose of
    gene numbering.

    Ambiguity in ID assignment can be resolved by either of the following 2 methods:
    - `alignment`: make use of global sequence alignment score (calculated by `needle`)
    - `overlap`: make use of overlap length (calculated by `intersectBed`)

    Transfer over as many identifiers as possible while following guidelines:
    http://www.arabidopsis.org/portals/nomenclature/guidelines.jsp#editing

    Note: Following RegExp pattern describes the structure of the identifier
    assigned to features in the `new.bed` file.

    new_id_pat = re.compile(r"^\d+\.[cemtx]+\S+")

    Examples: 23231.m312389, 23231.t004898, 23231.tRNA.144
    Adjust the value of `new_id_pat` manually as per your ID naming conventions.
    """
    from jcvi.utils.grouper import Grouper

    valid_resolve_choices = ["alignment", "overlap"]

    p = OptionParser(annotate.__doc__)
    p.add_option("--resolve", default="alignment", choices=valid_resolve_choices,
                 help="Resolve ID assignment based on a certain metric" \
                        + " [default: %default]")
    p.add_option("--atg_name", default=False, action="store_true",
                help="Specify is locus IDs in `new.bed` file follow ATG nomenclature" \
                        + " [default: %default]")

    g1 = OptionGroup(p, "Optional parameters (alignment):\n" \
            + "Use if resolving ambiguities based on sequence `alignment`")
    g1.add_option("--pid", dest="pid", default=35., type="float",
            help="Percent identity cutoff [default: %default]")
    g1.add_option("--score", dest="score", default=250., type="float",
            help="Alignment score cutoff [default: %default]")
    p.add_option_group(g1)

    g2 = OptionGroup(p, "Optional parameters (overlap):\n" \
            + "Use if resolving ambiguities based on `overlap` length\n" \
            + "Parameters equivalent to `intersectBed`")
    g2.add_option("-f", dest="f", default=0.5, type="float",
            help="Minimum overlap fraction (0.0 - 1.0) [default: %default]")
    g2.add_option("-r", dest="r", default=False, action="store_true",
            help="Require fraction overlap to be reciprocal [default: %default]")
    g2.add_option("-s", dest="s", default=True, action="store_true",
            help="Require same strandedness [default: %default]")
    p.add_option_group(g2)

    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    nbedfile, obedfile = args
    npf, opf = nbedfile.rsplit(".", 1)[0], obedfile.rsplit(".", 1)[0]

    # Make consolidated.bed
    cbedfile = "consolidated.bed"
    if not os.path.isfile(cbedfile):
        consolidate(nbedfile, obedfile, cbedfile)
    else:
        logging.warning("`{0}` already exists. Skipping step".format(cbedfile))

    logging.warning("Resolving ID assignment ambiguity based on `{0}`".\
            format(opts.resolve))

    if opts.resolve == "alignment":
        # Get pairs and prompt to run needle
        pairsfile = "nw.pairs"
        scoresfile = "nw.scores"
        if not os.path.isfile(pairsfile):
            get_pairs(cbedfile, pairsfile)
        else:
            logging.warning("`{0}` already exists. Checking for needle output".\
                    format(pairsfile))

        # If needle scores do not exist, prompt user to run needle
        if not os.path.isfile(scoresfile):
            logging.error("`{0}` does not exist. Please process {1} using `needle`".\
                    format(scoresfile, pairsfile))
            sys.exit()
    else:
        scoresfile = "ovl.scores"
        # Calculate overlap length using intersectBed
        calculate_ovl(nbedfile, obedfile, opts, scoresfile)

    logging.warning("`{0}' exists. Storing scores in memory".\
            format(scoresfile))
    scores = read_scores(scoresfile, opts)

    # Iterate through consolidated bed and
    # filter piles based on score
    abedline = {}

    cbed = Bed(cbedfile)
    g = Grouper()
    for c in cbed:
        accn = c.accn
        g.join(*accn.split(";"))

    nbedline = {}
    nbed = Bed(nbedfile)
    for line in nbed: nbedline[line.accn] = line

    splits = set()
    for chr, chrbed in nbed.sub_beds():
        abedline, splits = annotate_chr(chr, chrbed, g, scores, nbedline, abedline, opts, splits)

    if splits is not None:
        abedline = process_splits(splits, scores, nbedline, abedline)

    abedfile = npf + ".annotated.bed"
    afh = open(abedfile, "w")
    for accn in abedline:
        print >> afh, abedline[accn]
    afh.close()

    sort([abedfile, "-i"])
Exemplo n.º 43
0
def insert(args):
    """
    %prog insert candidates.bed gaps.bed chrs.fasta unplaced.fasta

    Insert scaffolds into assembly.
    """
    from jcvi.formats.agp import mask, bed
    from jcvi.formats.sizes import agp

    p = OptionParser(insert.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 4:
        sys.exit(not p.print_help())

    candidates, gapsbed, chrfasta, unplacedfasta = args
    refinedbed = refine([candidates, gapsbed])
    sizes = Sizes(unplacedfasta).mapping
    cbed = Bed(candidates)
    corder = cbed.order
    gbed = Bed(gapsbed)
    gorder = gbed.order

    gpbed = Bed()
    gappositions = {}  # (chr, start, end) => gapid

    fp = open(refinedbed)
    gap_to_scf = defaultdict(list)
    seen = set()
    for row in fp:
        atoms = row.split()
        unplaced = atoms[3]
        strand = atoms[5]
        gapid = atoms[9]
        if gapid not in seen:
            seen.add(gapid)
            gi, gb = gorder[gapid]
            gpbed.append(gb)
            gappositions[(gb.seqid, gb.start, gb.end)] = gapid
        gap_to_scf[gapid].append((unplaced, strand))

    gpbedfile = "candidate.gaps.bed"
    gpbed.print_to_file(gpbedfile, sorted=True)

    agpfile = agp([chrfasta])
    maskedagpfile = mask([agpfile, gpbedfile])
    maskedbedfile = maskedagpfile.rsplit(".", 1)[0] + ".bed"
    bed([maskedagpfile, "--outfile={0}".format(maskedbedfile)])

    mbed = Bed(maskedbedfile)
    beds = []
    for b in mbed:
        sid = b.seqid
        key = (sid, b.start, b.end)
        if key not in gappositions:
            beds.append(b)
            continue

        gapid = gappositions[key]
        scfs = gap_to_scf[gapid]

        # For scaffolds placed in the same gap, sort according to positions
        scfs.sort(key=lambda x: corder[x[0]][1].start + corder[x[0]][1].end)
        for scf, strand in scfs:
            size = sizes[scf]
            beds.append(BedLine("\t".join(str(x) for x in \
                    (scf, 0, size, sid, 1000, strand))))

    finalbed = Bed()
    finalbed.extend(beds)
    finalbedfile = "final.bed"
    finalbed.print_to_file(finalbedfile)

    # Clean-up
    toclean = [gpbedfile, agpfile, maskedagpfile, maskedbedfile]
    FileShredder(toclean)
Exemplo n.º 44
0
    def __init__(self, fig, root, datafile, bedfile, layoutfile,
                 switch=None, tree=None, extra_features=None,
                 chr_label=True, loc_label=True, pad=.05, vpad=.015,
                 scalebar=False):

        w, h = fig.get_figwidth(), fig.get_figheight()
        bed = Bed(bedfile)
        order = bed.order
        bf = BlockFile(datafile)
        self.layout = lo = Layout(layoutfile)
        switch = DictFile(switch, delimiter="\t") if switch else None
        if extra_features:
            extra_features = Bed(extra_features)

        exts = []
        extras = []
        for i in range(bf.ncols):
            ext = bf.get_extent(i, order)
            exts.append(ext)
            if extra_features:
                start, end, si, ei, chr, orientation, span = ext
                start, end = start.start, end.end  # start, end coordinates
                ef = list(extra_features.extract(chr, start, end))

                # Pruning removes minor features with < 0.1% of the region
                ef_pruned = [x for x in ef if x.span >= span / 1000]
                print("Extracted {0} features "\
                        "({1} after pruning)".format(len(ef), len(ef_pruned)), file=sys.stderr)
                extras.append(ef_pruned)

        maxspan = max(exts, key=lambda x: x[-1])[-1]
        scale = maxspan / .65

        self.gg = gg = {}
        self.rr = []
        ymids = []
        #vpad = .012 * w / h
        for i in range(bf.ncols):
            ext = exts[i]
            ef = extras[i] if extras else None
            r = Region(root, ext, lo[i], bed, scale, switch,
                       chr_label=chr_label, loc_label=loc_label,
                       vpad=vpad, extra_features=ef)
            self.rr.append(r)
            # Use tid and accn to store gene positions
            gg.update(dict(((i, k), v) for k, v in r.gg.items()))
            ymids.append(r.y)

        for i, j, samearc in lo.edges:
            for ga, gb, h in bf.iter_pairs(i, j):
                a, b = gg[(i, ga)], gg[(j, gb)]
                if samearc == "above":
                    ymid = ymids[i] + 2 * pad
                elif samearc == "below":
                    ymid = ymids[i] - 2 * pad
                else:
                    ymid = (ymids[i] + ymids[j]) / 2
                Shade(root, a, b, ymid, fc="gainsboro", lw=0, alpha=1)

            for ga, gb, h in bf.iter_pairs(i, j, highlight=True):
                a, b = gg[(i, ga)], gg[(j, gb)]
                if samearc == "above":
                    ymid = ymids[i] + 2 * pad
                elif samearc == "below":
                    ymid = ymids[i] - 2 * pad
                else:
                    ymid = (ymids[i] + ymids[j]) / 2
                Shade(root, a, b, ymid, alpha=1, highlight=h, zorder=2)

        if scalebar:
            print("Build scalebar (scale={})".format(scale), file=sys.stderr)
            # Find the best length of the scalebar
            ar = [1, 2, 5]
            candidates = [1000 * x for x in ar] + [10000 * x for x in ar] + \
                         [100000 * x for x in ar]
            # Find the one that's close to an optimal canvas size
            dists = [(abs(x / scale - .12), x) for x in candidates]
            dist, candidate = min(dists)
            dist = candidate / scale
            x, y, yp = .2, .96, .005
            a, b = x - dist / 2, x + dist / 2
            lsg = "lightslategrey"
            root.plot([a, a], [y - yp, y + yp], "-", lw=2, color=lsg)
            root.plot([b, b], [y - yp, y + yp], "-", lw=2, color=lsg)
            root.plot([a, b], [y, y], "-", lw=2, color=lsg)
            root.text(x, y + .02, human_size(candidate, precision=0),
                      ha="center", va="center")

        if tree:
            from jcvi.graphics.tree import draw_tree, read_trees

            trees = read_trees(tree)
            ntrees = len(trees)
            logging.debug("A total of {0} trees imported.".format(ntrees))
            xiv = 1. / ntrees
            yiv = .3
            xstart = 0
            ystart = min(ymids) - .4
            for i in range(ntrees):
                ax = fig.add_axes([xstart, ystart, xiv, yiv])
                label, outgroup, color, tx = trees[i]
                draw_tree(ax, tx, outgroup=outgroup, rmargin=.4, leaffont=11,
                          treecolor=color, supportcolor=color, leafcolor=color)
                xstart += xiv
                RoundLabel(ax, .5, .3, label, fill=True, fc="lavender",
                           color=color)
Exemplo n.º 45
0
def depth(args):
    """
    %prog depth *.regions.bed.gz

    Plot the mosdepth regions BED file. We recommend to generate this BED file
    by (please adjust the --by parameter to your required resolution):

    $ mosdepth --no-per-base --use-median --fast-mode --by 1000000 sample.wgs
    sample.bam

    Use --chrinfo to specify a colormap between seqid, desired color, and
    optionally a new name. For example:

    chr01A, #c51b7d, 1A
    chr01B, #4d9221, 1B
    ...

    Only seqids that are in the colormap will be plotted, in the order that's
    given in the file. When --colormap is not set, every seqid will be drawn in
    black.

    Can take multiple BED files as input and then plot all of them in a
    composite figure.
    """
    p = OptionParser(depth.__doc__)
    p.add_option(
        "--chrinfo",
        help="Comma-separated mappings between seqid, color, new_name")
    p.add_option(
        "--titleinfo",
        help="Comma-separated titles mappings between filename, title",
    )
    p.add_option("--maxdepth",
                 default=100,
                 type="int",
                 help="Maximum depth to show")
    p.add_option("--logscale",
                 default=False,
                 action="store_true",
                 help="Use log-scale on depth")
    opts, args, iopts = p.set_image_options(args, style="dark", figsize="14x4")

    if len(args) < 1:
        sys.exit(not p.print_help())

    bedfiles = args
    chrinfo = ChrInfoFile(opts.chrinfo) if opts.chrinfo else {}
    titleinfo = TitleInfoFile(opts.titleinfo) if opts.titleinfo else {}

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    npanels = len(bedfiles)
    yinterval = 1.0 / npanels
    ypos = 1 - yinterval
    for bedfile in bedfiles:
        pf = op.basename(bedfile).split(".", 1)[0]
        bed = Bed(bedfile)

        panel_root = root if npanels == 1 else fig.add_axes(
            [0, ypos, 1, yinterval])
        panel_ax = fig.add_axes(
            [0.1, ypos + 0.2 * yinterval, 0.8, 0.65 * yinterval])
        if ypos > 0.001:
            root.plot((0, 1), (ypos, ypos), "-", lw=2, color="lightslategray")

        title = titleinfo.get(bedfile, pf.split("_", 1)[0])
        subtitle = None
        if isinstance(title, TitleInfoLine):
            subtitle = title.subtitle
            title = title.title

        draw_depth(
            panel_root,
            panel_ax,
            bed,
            chrinfo=chrinfo,
            ylim=opts.maxdepth,
            logscale=opts.logscale,
            title=title,
            subtitle=subtitle,
        )
        ypos -= yinterval

    normalize_axes(root)

    if npanels > 1:
        pf = op.commonprefix(bedfiles)
    pf = pf or "depth"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
Exemplo n.º 46
0
def bambus(args):
    """
    %prog bambus bambus.bed bambus.mates total.fasta

    Insert unplaced scaffolds based on mates.
    """
    from jcvi.utils.iter import pairwise
    from jcvi.formats.posmap import MatesFile

    p = OptionParser(bambus.__doc__)
    p.add_option("--prefix", default="scaffold",
                 help="Prefix of the unplaced scaffolds [default: %default]")
    p.add_option("--minlinks", default=3, type="int",
                 help="Minimum number of links to place [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    bedfile, matesfile, fastafile = args
    pf = matesfile.rsplit(".", 1)[0]
    logfile = pf + ".log"
    log = open(logfile, "w")

    mf = MatesFile(matesfile)
    maxdist = max(x.max for x in mf.libraries.values())
    logging.debug("Max separation: {0}".format(maxdist))

    prefix = opts.prefix
    minlinks = opts.minlinks

    is_unplaced = lambda x: x.startswith(prefix)
    bed = Bed(bedfile, sorted=False)
    beds = []
    unplaced = defaultdict(list)

    for a, b in pairwise(bed):
        aname, bname = a.accn, b.accn
        aseqid, bseqid = a.seqid, b.seqid

        if aname not in mf:
            continue

        pa, la = mf[aname]
        if pa != bname:
            continue

        ia = is_unplaced(aseqid)
        ib = is_unplaced(bseqid)
        if ia == ib:
            continue

        if ia:
            a, b = b, a

        unplaced[b.seqid].append((a, b))
        beds.extend([a, b])

    sizes = Sizes(fastafile)
    candidatebed = Bed()
    cbeds = []
    # For each unplaced scaffold, find most likely placement and orientation
    for scf, beds in sorted(unplaced.items()):
        print >> log
        ranges = []
        for a, b in beds:
            aname, astrand = a.accn, a.strand
            bname, bstrand = b.accn, b.strand
            aseqid, bseqid = a.seqid, b.seqid
            pa, lib = mf[aname]

            print >> log, a
            print >> log, b

            flip_b = (astrand == bstrand)
            fbstrand = '-' if flip_b else '+'
            if flip_b:
                b.reverse_complement(sizes)

            lmin, lmax = lib.min, lib.max

            L = sizes.get_size(scf)
            assert astrand in ('+', '-')
            if astrand == '+':
                offset = a.start - b.end
                sstart, sstop = offset + lmin, offset + lmax
            else:
                offset = a.end - b.start + L
                sstart, sstop = offset - lmax, offset - lmin

            # Prevent out of range error
            size = sizes.get_size(aseqid)
            sstart = max(0, sstart)
            sstop = max(0, sstop)
            sstart = min(size - 1, sstart)
            sstop = min(size - 1, sstop)

            start_range = (aseqid, sstart, sstop, scf, 1, fbstrand)
            print >> log, "*" + "\t".join(str(x) for x in start_range)
            ranges.append(start_range)

        mranges = [x[:3] for x in ranges]
        # Determine placement by finding the interval with the most support
        rd = ranges_depth(mranges, sizes.mapping, verbose=False)
        alldepths = []
        for depth in rd:
            alldepths.extend(depth)
        print >> log, alldepths

        maxdepth = max(alldepths, key=lambda x: x[-1])[-1]
        if maxdepth < minlinks:
            print >> log, "Insufficient links ({0} < {1})".format(maxdepth, minlinks)
            continue

        candidates = [x for x in alldepths if x[-1] == maxdepth]
        nseqids = len(set(x[0] for x in candidates))
        msg = "Multiple conflicting candidates found"
        if nseqids != 1:
            print >> log, msg
            continue

        seqid, mmin, mmax, depth = candidates[0]
        mmin, mmax = range_minmax([x[1:3] for x in candidates])
        if (mmax - mmin) > maxdist:
            print >> log, msg
            continue

        # Determine orientation by voting
        nplus, nminus = 0, 0
        arange = (seqid, mmin, mmax)
        for sid, start, end, sf, sc, fbstrand in ranges:
            brange = (sid, start, end)
            if range_overlap(arange, brange):
                if fbstrand == '+':
                    nplus += 1
                else:
                    nminus += 1

        fbstrand = '+' if nplus >= nminus else '-'

        candidate = (seqid, mmin, mmax, scf, depth, fbstrand)
        bedline = BedLine("\t".join((str(x) for x in candidate)))
        cbeds.append(bedline)
        print >> log, "Plus: {0}, Minus: {1}".format(nplus, nminus)
        print >> log, candidate

    candidatebed.extend(cbeds)
    logging.debug("A total of {0} scaffolds can be placed.".\
                    format(len(candidatebed)))
    log.close()

    candidatebedfile = pf + ".candidate.bed"
    candidatebed.print_to_file(candidatebedfile, sorted=True)
Exemplo n.º 47
0
def bambus(args):
    """
    %prog bambus bambus.bed bambus.mates total.fasta

    Insert unplaced scaffolds based on mates.
    """
    from jcvi.utils.iter import pairwise
    from jcvi.formats.bed import BedLine
    from jcvi.formats.posmap import MatesFile

    p = OptionParser(bambus.__doc__)
    p.add_option("--prefix", default="scaffold",
                 help="Prefix of the unplaced scaffolds [default: %default]")
    p.add_option("--minlinks", default=3, type="int",
                 help="Minimum number of links to place [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    bedfile, matesfile, fastafile = args
    pf = matesfile.rsplit(".", 1)[0]
    logfile = pf + ".log"
    log = open(logfile, "w")

    mf = MatesFile(matesfile)
    maxdist = max(x.max for x in mf.libraries.values())
    logging.debug("Max separation: {0}".format(maxdist))

    prefix = opts.prefix
    minlinks = opts.minlinks

    is_unplaced = lambda x: x.startswith(prefix)
    bed = Bed(bedfile, sorted=False)
    beds = []
    unplaced = defaultdict(list)

    for a, b in pairwise(bed):
        aname, bname = a.accn, b.accn
        aseqid, bseqid = a.seqid, b.seqid

        if aname not in mf:
            continue

        pa, la = mf[aname]
        if pa != bname:
            continue

        ia = is_unplaced(aseqid)
        ib = is_unplaced(bseqid)
        if ia == ib:
            continue

        if ia:
            a, b = b, a

        unplaced[b.seqid].append((a, b))
        beds.extend([a, b])

    sizes = Sizes(fastafile)
    candidatebed = Bed()
    cbeds = []
    # For each unplaced scaffold, find most likely placement and orientation
    for scf, beds in sorted(unplaced.items()):
        print >> log
        ranges = []
        for a, b in beds:
            aname, astrand = a.accn, a.strand
            bname, bstrand = b.accn, b.strand
            aseqid, bseqid = a.seqid, b.seqid
            pa, lib = mf[aname]

            print >> log, a
            print >> log, b

            flip_b = (astrand == bstrand)
            fbstrand = '-' if flip_b else '+'
            if flip_b:
                b.reverse_complement(sizes)

            lmin, lmax = lib.min, lib.max

            L = sizes.get_size(scf)
            assert astrand in ('+', '-')
            if astrand == '+':
                offset = a.start - b.end
                sstart, sstop = offset + lmin, offset + lmax
            else:
                offset = a.end - b.start + L
                sstart, sstop = offset - lmax, offset - lmin

            # Prevent out of range error
            size = sizes.get_size(aseqid)
            sstart = max(0, sstart)
            sstop = max(0, sstop)
            sstart = min(size - 1, sstart)
            sstop = min(size - 1, sstop)

            start_range = (aseqid, sstart, sstop, scf, 1, fbstrand)
            print >> log, "*" + "\t".join(str(x) for x in start_range)
            ranges.append(start_range)

        mranges = [x[:3] for x in ranges]
        # Determine placement by finding the interval with the most support
        rd = ranges_depth(mranges, sizes.mapping, verbose=False)
        alldepths = []
        for depth in rd:
            alldepths.extend(depth)
        print >> log, alldepths

        maxdepth = max(alldepths, key=lambda x: x[-1])[-1]
        if maxdepth < minlinks:
            print >> log, "Insufficient links ({0} < {1})".format(maxdepth, minlinks)
            continue

        candidates = [x for x in alldepths if x[-1] == maxdepth]
        nseqids = len(set(x[0] for x in candidates))
        if nseqids != 1:
            msg = "Multiple conflicting candidates found"
            print >> log, msg
            continue

        seqid, mmin, mmax, depth = candidates[0]
        mmin, mmax = range_minmax([x[1:3] for x in candidates])

        if mmin >= mmax:
            msg = "Invalid (min, max) range"
            print >> log, "Invalid (min, max) range"
            continue

        if (mmax - mmin) > maxdist:
            msg = "(min, max) distance greater than library maxdist"
            print >> log, msg
            continue

        # Determine orientation by voting
        nplus, nminus = 0, 0
        arange = (seqid, mmin, mmax)
        for sid, start, end, sf, sc, fbstrand in ranges:
            brange = (sid, start, end)
            if range_overlap(arange, brange):
                if fbstrand == '+':
                    nplus += 1
                else:
                    nminus += 1

        fbstrand = '+' if nplus >= nminus else '-'

        candidate = (seqid, mmin, mmax, scf, depth, fbstrand)
        bedline = BedLine("\t".join((str(x) for x in candidate)))
        cbeds.append(bedline)
        print >> log, "Plus: {0}, Minus: {1}".format(nplus, nminus)
        print >> log, candidate

    candidatebed.extend(cbeds)
    logging.debug("A total of {0} scaffolds can be placed.".\
                    format(len(candidatebed)))
    log.close()

    candidatebedfile = pf + ".candidate.bed"
    candidatebed.print_to_file(candidatebedfile, sorted=True)
Exemplo n.º 48
0
def shuffle_twobeds(afbed, bfbed, bbfasta, prefix=None):
    # Shuffle the two bedfiles together
    sz = Sizes(bbfasta)
    sizes = sz.mapping
    shuffled = "shuffled.bed"
    border = bfbed.order

    all = []
    afbed.sort(key=afbed.nullkey)
    totalids = len(sizes)
    pad = int(math.log10(totalids)) + 1
    cj = 0
    seen = set()
    accn = lambda x: "{0}{1:0{2}d}".format(prefix, x, pad)

    for seqid, aa in afbed.sub_beds():
        cj += 1
        abeds, bbeds, beds = [], [], []
        size = sizes[seqid]
        ranges = [(x.seqid, x.start, x.end) for x in aa]
        cranges = range_interleave(ranges, sizes={seqid: size}, empty=True)
        for crange in cranges:
            if crange:
                seqid, start, end = crange
                bedline = "\t".join(str(x) for x in (seqid, start - 1, end))
                abeds.append(BedLine(bedline))
            else:
                abeds.append(None)

        for a in aa:
            gapid = a.accn
            bi, b = border[gapid]
            if a.strand == '-':
                b.extra[1] = b.strand = ('-' if b.strand == '+' else '+')

            bbeds.append(b)

        n_abeds = len(abeds)
        n_bbeds = len(bbeds)
        assert n_abeds - n_bbeds == 1, \
            "abeds: {0}, bbeds: {1}".format(n_abeds, n_bbeds)

        beds = [x for x in roundrobin(abeds, bbeds) if x]
        if prefix:
            for b in beds:
                b.accn = accn(cj)

        all.extend(beds)
        seen.add(seqid)

    # Singletons
    for seqid, size in sz.iter_sizes():
        if seqid in seen:
            continue

        bedline = "\t".join(str(x) for x in (seqid, 0, size, accn(cj)))
        b = BedLine(bedline)

        cj += 1
        if prefix:
            b.accn = accn(cj)

        all.append(b)

    shuffledbed = Bed()
    shuffledbed.extend(all)
    shuffledbed.print_to_file(shuffled)

    return shuffledbed
Exemplo n.º 49
0
def insert(args):
    """
    %prog insert candidates.bed gaps.bed chrs.fasta unplaced.fasta

    Insert scaffolds into assembly.
    """
    from jcvi.formats.agp import mask, bed
    from jcvi.formats.sizes import agp

    p = OptionParser(insert.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 4:
        sys.exit(not p.print_help())

    candidates, gapsbed, chrfasta, unplacedfasta = args
    refinedbed = refine([candidates, gapsbed])
    sizes = Sizes(unplacedfasta).mapping
    cbed = Bed(candidates)
    corder = cbed.order
    gbed = Bed(gapsbed)
    gorder = gbed.order

    gpbed = Bed()
    gappositions = {}  # (chr, start, end) => gapid

    fp = open(refinedbed)
    gap_to_scf = defaultdict(list)
    seen = set()
    for row in fp:
        atoms = row.split()
        if len(atoms) <= 6:
            continue
        unplaced = atoms[3]
        strand = atoms[5]
        gapid = atoms[9]
        if gapid not in seen:
            seen.add(gapid)
            gi, gb = gorder[gapid]
            gpbed.append(gb)
            gappositions[(gb.seqid, gb.start, gb.end)] = gapid
        gap_to_scf[gapid].append((unplaced, strand))

    gpbedfile = "candidate.gaps.bed"
    gpbed.print_to_file(gpbedfile, sorted=True)

    agpfile = agp([chrfasta])
    maskedagpfile = mask([agpfile, gpbedfile])
    maskedbedfile = maskedagpfile.rsplit(".", 1)[0] + ".bed"
    bed([maskedagpfile, "--outfile={0}".format(maskedbedfile)])

    mbed = Bed(maskedbedfile)
    finalbed = Bed()
    for b in mbed:
        sid = b.seqid
        key = (sid, b.start, b.end)
        if key not in gappositions:
            finalbed.add("{0}\n".format(b))
            continue

        gapid = gappositions[key]
        scfs = gap_to_scf[gapid]

        # For scaffolds placed in the same gap, sort according to positions
        scfs.sort(key=lambda x: corder[x[0]][1].start + corder[x[0]][1].end)
        for scf, strand in scfs:
            size = sizes[scf]
            finalbed.add("\t".join(str(x) for x in \
                    (scf, 0, size, sid, 1000, strand)))

    finalbedfile = "final.bed"
    finalbed.print_to_file(finalbedfile)

    # Clean-up
    toclean = [gpbedfile, agpfile, maskedagpfile, maskedbedfile]
    FileShredder(toclean)
Exemplo n.º 50
0
def extract(args):
    import re
    from jcvi.formats.bed import Bed

    db = ""
    if op.isfile(args.db):
        db = Fasta(args.db)
    else:
        f_db = "%s/data/%s/10_genome.fna" % (os.environ["genome"], args.db)
        assert op.isfile(f_db), "cannot find %s" % args.db
        db = Fasta(f_db)

    reg1 = re.compile("^([\w\-]+)\:([\d,]+)(\-|\.{1,2})([\d,]+)$")
    reg2 = re.compile("^([\w\-]+)$")
    bed = Bed()
    if op.isfile(args.loc):
        if args.list:
            fho = must_open(args.loc, 'r')
            for line in fho:
                sid = line.strip()
                beg = 0
                if sid in db:
                    end = len(db[sid])
                    bed.add("%s\t%d\t%d\n" % (sid, beg, end))
                # else:
                # logging.error("%s not in db => skipped" % sid)
        else:
            bed = Bed(args.loc, sorted=False)
    else:
        for loc in args.loc.split(","):
            res = reg1.match(loc)
            if res:
                sid, beg, end = res.group(1), res.group(2), res.group(4)
                beg = int(beg.replace(",", ""))
                end = int(end.replace(",", ""))
                bed.add("%s\t%d\t%d\n" % (sid, beg - 1, end))
            else:
                res = reg2.match(loc)
                if res:
                    sid = res.group(1)
                    beg = 0
                    if sid in db:
                        end = len(db[sid])
                        bed.add("%s\t%d\t%d\n" % (sid, beg, end))
                    # else:
                    # logging.error("%s not in db => skipped" % sid)
                else:
                    logging.error("%s: unknown locstr => skipped" % loc)

    rcds = []
    for b in bed:
        sid, beg, end = b.seqid, b.start, b.end
        oid = sid if args.list else f"{sid}-{beg}-{end}"
        if b.accn:
            oid = b.accn
        if sid not in db:
            print("%s not in db => skipped" % sid)
            continue
        size = end - beg + 1
        bp_pad = 0
        if beg < 1:
            bp_pad += 1 - beg
            beg = 1
        if beg > len(db[sid]):
            bp_pad = 1
            beg = len(db[sid])
        if end > len(db[sid]):
            bp_pad += end - len(db[sid])
            end = len(db[sid])
        seq = db[sid][beg - 1:end].seq
        if args.padding:
            if bp_pad > 0:
                if end - beg + 1 < 30:
                    seq = "N" * size
                else:
                    seq += "N" * bp_pad
            assert len(seq) == size, "error in seq size: %s:%d-%d %d" % (
                sid, beg, end, bp_pad)

        if args.tsv:
            print("\t".join([sid, str(beg), str(end), seq]))
        else:
            rcd = SeqRecord(Seq(seq), id=oid, description='')
            SeqIO.write([rcd], sys.stdout, 'fasta')
Exemplo n.º 51
0
def ancestral(args):
    """
    %prog ancestral vplanifoliaA.vplanifoliaA.anchors > vplanifoliaA_blocks.bed

    Paint 14 chromosomes following alpha WGD.
    """
    p = OptionParser(ancestral.__doc__)
    p.set_beds()
    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    (anchorsfile, ) = args
    qbed, sbed, qorder, sorder, is_self = check_beds(anchorsfile, p, opts)

    # We focus on the following chromosome pairs
    target_pairs = set((
        (1, 1),
        (1, 6),
        (1, 8),
        (1, 13),
        (2, 4),
        (3, 12),
        (3, 14),
        (5, 6),
        (5, 8),
        (7, 9),
        (7, 11),
        (9, 10),
        (10, 11),
    ))

    def get_target(achr, bchr):
        if "chr" not in achr and "chr" not in bchr:
            return None
        achr, bchr = get_number(achr), get_number(bchr)
        if achr > bchr:
            achr, bchr = bchr, achr
        if (achr, bchr) in target_pairs:
            return achr, bchr
        return None

    def build_bedline(astart, aend, target_pair):
        # target_name = "{:02d}-{:02d}".format(*target_pair)
        target_name = [
            str(x) for x in target_pair if x in (1, 2, 3, 5, 7, 10)
        ][0]
        return "\t".join(
            str(x)
            for x in (astart.seqid, astart.start, aend.end, target_name))

    # Iterate through the blocks, store any regions that has hits to one of the
    # target_pairs
    ac = AnchorFile(anchorsfile)
    blocks = ac.blocks
    outbed = Bed()
    for i, block in enumerate(blocks):
        a, b, scores = zip(*block)
        a = [qorder[x] for x in a]
        b = [sorder[x] for x in b]
        astart, aend = min(a)[1], max(a)[1]
        bstart, bend = min(b)[1], max(b)[1]
        # Now convert to BED lines with new accn
        achr, bchr = astart.seqid, bstart.seqid
        target = get_target(achr, bchr)
        if target is None:
            continue
        outbed.add(build_bedline(astart, aend, target))
        outbed.add(build_bedline(bstart, bend, target))
    outbed.print_to_file(sorted=True)
Exemplo n.º 52
0
def composite(args):
    """
    %prog composite fastafile chr1

    Combine line plots, feature bars and alt-bars, different data types
    specified in options. Inputs must be BED-formatted. Three types of viz are
    currently supported:

    --lines: traditional line plots, useful for plotting feature freq
    --bars: show where the extent of features are
    --altbars: similar to bars, yet in two alternating tracks, e.g. scaffolds
    """
    from jcvi.graphics.chromosome import HorizontalChromosome

    p = OptionParser(composite.__doc__)
    p.add_option("--lines",
                 help="Features to plot in lineplot [default: %default]")
    p.add_option("--bars",
                 help="Features to plot in bars [default: %default]")
    p.add_option("--altbars",
                 help="Features to plot in alt-bars [default: %default]")
    p.add_option("--fatten", default=False, action="store_true",
                 help="Help visualize certain narrow features [default: %default]")
    p.add_option("--mode", default="span", choices=("span", "count", "score"),
                 help="Accumulate feature based on [default: %default]")
    add_window_options(p)
    opts, args, iopts = p.set_image_options(args, figsize="8x5")

    if len(args) != 2:
        sys.exit(not p.print_help())

    fastafile, chr = args
    window, shift, subtract = check_window_options(opts)
    linebeds, barbeds, altbarbeds = [], [], []
    fatten = opts.fatten
    if opts.lines:
        lines = opts.lines.split(",")
        linebeds = get_beds(lines)
    if opts.bars:
        bars = opts.bars.split(",")
        barbeds = get_beds(bars)
    if opts.altbars:
        altbars = opts.altbars.split(",")
        altbarbeds = get_beds(altbars)

    linebins = get_binfiles(linebeds, fastafile, shift, mode=opts.mode)

    margin = .12
    clen = Sizes(fastafile).mapping[chr]
    nbins = get_nbins(clen, shift)

    plt.rcParams["xtick.major.size"] = 0
    plt.rcParams["ytick.major.size"] = 0

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    root.text(.5, .95, chr, ha="center", color="darkslategray")

    xstart, xend = margin, 1 - margin
    xlen = xend - xstart
    ratio = xlen / clen
    # Line plots
    ax = fig.add_axes([xstart, .6, xlen, .3])
    lineplot(ax, linebins, nbins, chr, window, shift)

    # Bar plots
    yy = .5
    yinterval = .08
    xs = lambda x: xstart + ratio * x
    r = .01
    fattend = .0025
    for bb in barbeds:
        root.text(xend + .01, yy, bb.split(".")[0], va="center")
        HorizontalChromosome(root, xstart, xend, yy, height=.02)
        bb = Bed(bb)
        for b in bb:
            start, end = xs(b.start), xs(b.end)
            span = end - start
            if fatten and span < fattend:
                span = fattend

            root.add_patch(Rectangle((start, yy - r), span, 2 * r, \
                            lw=0, fc="darkslategray"))
        yy -= yinterval

    # Alternative bar plots
    offset = r / 2
    for bb in altbarbeds:
        root.text(xend + .01, yy, bb.split(".")[0], va="center")
        bb = Bed(bb)
        for i, b in enumerate(bb):
            start, end = xs(b.start), xs(b.end)
            span = end - start
            if span < .0001:
                continue
            offset = -offset
            root.add_patch(Rectangle((start, yy + offset), end - start, .003, \
                            lw=0, fc="darkslategray"))
        yy -= yinterval

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = chr + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
Exemplo n.º 53
0
def split(args):
    """
    %prog split split.bed evidences.bed predictor1.gff predictor2.gff fastafile

    Split MAKER models by checking against predictors (such as AUGUSTUS and
    FGENESH). For each region covered by a working model. Find out the
    combination of predictors that gives the best accuracy against evidences
    (such as PASA).

    `split.bed` can be generated by pulling out subset from a list of ids
    $ python -m jcvi.formats.base join split.ids working.bed
        --column=0,3 --noheader | cut -f2-7 > split.bed
    """
    from jcvi.formats.bed import Bed

    p = OptionParser(split.__doc__)
    p.add_option(
        "--key",
        default="Name",
        help="Key in the attributes to extract predictor.gff",
    )
    p.add_option(
        "--parents",
        default="match",
        help="list of features to extract, use comma to separate (e.g.'gene,mRNA')",
    )
    p.add_option(
        "--children",
        default="match_part",
        help="list of features to extract, use comma to separate (e.g."
        "'five_prime_UTR,CDS,three_prime_UTR')",
    )
    opts, args = p.parse_args(args)

    if len(args) != 5:
        sys.exit(not p.print_help())

    split_bed, evidences_bed, p1_gff, p2_gff, fastafile = args
    parents = opts.parents
    children = opts.children
    key = opts.key

    bed = Bed(split_bed)

    s1 = get_splits(split_bed, p1_gff, parents, key)
    s2 = get_splits(split_bed, p2_gff, parents, key)

    for b in bed:
        query = "{0}:{1}-{2}".format(b.seqid, b.start, b.end)
        b1 = get_accuracy(query, p1_gff, evidences_bed, fastafile, children, key)
        b2 = get_accuracy(query, p2_gff, evidences_bed, fastafile, children, key)
        accn = b.accn
        c1 = "|".join(s1[accn])
        c2 = "|".join(s2[accn])
        ac1 = b1.accuracy
        ac2 = b2.accuracy
        tag = p1_gff if ac1 >= ac2 else p2_gff
        tag = tag.split(".")[0]

        ac1 = "{0:.3f}".format(ac1)
        ac2 = "{0:.3f}".format(ac2)

        print("\t".join((accn, tag, ac1, ac2, c1, c2)))