Exemplo n.º 1
0
def test_cup_pour(demo_name, exp_name):
    test_cup_pour_init()

    verb_data_accessor = multi_item_verbs.VerbDataAccessor(test=True)

    current_stage = 1
    gripper_data_key = "r_gripper_tool_frame"

    # info and data for previous stage
    prev_demo_info = verb_data_accessor.get_stage_info(demo_name, current_stage-1)
    prev_demo_data = verb_data_accessor.get_demo_data(prev_demo_info.stage_name)
    prev_exp_info = verb_data_accessor.get_stage_info(exp_name, current_stage-1)
    prev_exp_data = verb_data_accessor.get_demo_data(prev_exp_info.stage_name)

    # info and data for current stage
    cur_demo_info = verb_data_accessor.get_stage_info(demo_name, current_stage)
    cur_demo_data = verb_data_accessor.get_demo_data(cur_demo_info.stage_name)
    cur_exp_info = verb_data_accessor.get_stage_info(exp_name, current_stage)
    cur_exp_data = verb_data_accessor.get_demo_data(cur_exp_info.stage_name)
    
    # point clouds of tool for demo and experiment
    prev_exp_pc = prev_exp_data["object_clouds"][prev_exp_info.item]["xyz"]
    cur_exp_pc = cur_exp_data["object_clouds"][cur_exp_info.item]["xyz"]

    # calculate the transformation from the world frame to the gripper frame
    prev_exp_gripper_pos = prev_exp_data[gripper_data_key]["position"][-1]
    prev_exp_gripper_orien = prev_exp_data[gripper_data_key]["orientation"][-1]
    prev_world_to_gripper_trans = np.linalg.inv(juc.trans_rot_to_hmat(prev_exp_gripper_pos, prev_exp_gripper_orien))
    gripper_frame_trans = make_verb_traj.make_to_gripper_frame_hmat(prev_world_to_gripper_trans)

    warped_traj_resp = make_verb_traj.make_traj_multi_stage_do_work(cur_demo_info, [cur_exp_pc], None, current_stage, prev_demo_info, [prev_exp_pc], verb_data_accessor, gripper_frame_trans)

    # get the actual transformation between the old and new target objects (just a translation for this test)
    params = get_test_params()
    translation = params['translation']
    actual_target_translation_matrix = jut.translation_matrix(translation)

    # get the demo special point trajectory
    cur_demo_gripper_traj_xyzs = cur_demo_data[gripper_data_key]["position"]
    cur_demo_gripper_traj_oriens = cur_demo_data[gripper_data_key]["orientation"]
    cur_demo_gripper_traj_mats = [juc.trans_rot_to_hmat(trans, orien) for (trans, orien) in zip(cur_demo_gripper_traj_xyzs, cur_demo_gripper_traj_oriens)]
    prev_demo_spec_pt_translation = jut.translation_matrix(np.array(prev_demo_info.special_point))
    cur_demo_spec_pt_traj_as_mats = [np.dot(traj_mat, prev_demo_spec_pt_translation) for traj_mat in cur_demo_gripper_traj_mats]

    # get the expected experiment special point trajectory
    expected_spec_pt_traj = [np.dot(actual_target_translation_matrix, traj_mat) for traj_mat in cur_demo_spec_pt_traj_as_mats]

    # get the expected experiment gripper trajectory
    prev_exp_spec_pt_translation = jut.translation_matrix(np.array(prev_exp_info.special_point))
    inv_cur_exp_spec_pt_translation = np.linalg.inv(prev_exp_spec_pt_translation)
    expected_gripper_traj = [np.dot(traj_mat, inv_cur_exp_spec_pt_translation) for traj_mat in expected_spec_pt_traj]

    # compare the expected new special point trajectory to the result of make_traj_multi_stage
    result_traj = warped_traj_resp.traj
    cur_exp_traj_as_mats = [juc.pose_to_hmat(pose) for pose in result_traj.r_gripper_poses.poses]

    report(similar_trajectories(expected_gripper_traj, cur_exp_traj_as_mats))
def get_demo_spec_pt_traj_mats(demo_tool_info, demo_target_data, gripper_data_key):
    demo_grip_traj_xyzs = demo_target_data[gripper_data_key]["position"]
    demo_grip_traj_oriens = demo_target_data[gripper_data_key]["orientation"]
    demo_grip_traj_mats = [juc.trans_rot_to_hmat(trans, orien) for (trans, orien) in zip(demo_grip_traj_xyzs, demo_grip_traj_oriens)]
    demo_tool_spec_pt_translation = jut.translation_matrix(np.array(demo_tool_info.special_point))
    demo_spec_pt_traj_mats = [np.dot(traj_mat, demo_tool_spec_pt_translation) for traj_mat in demo_grip_traj_mats]
    return demo_spec_pt_traj_mats
Exemplo n.º 3
0
def make_kin_tree_from_joint(ps,jointname, ns='default_ns',valuedict=None):
    rospy.logdebug("joint: %s"%jointname)
    U = get_pr2_urdf()
        
    joint = U.joints[jointname]
    joint.origin = joint.origin or urdf.Pose()
    if not joint.origin.position: joint.origin.position = [0,0,0]
    if not joint.origin.rotation: joint.origin.rotation = [0,0,0]
   
    parentFromChild = conversions.trans_rot_to_hmat(joint.origin.position, transformations.quaternion_from_euler(*joint.origin.rotation))

    childFromRotated = np.eye(4)
    if valuedict and jointname in valuedict:        
        
        if joint.joint_type == 'revolute' or joint.joint_type == 'continuous':
            childFromRotated = transformations.rotation_matrix(valuedict[jointname], joint.axis)
        elif joint.joint_type == 'prismatic':
            childFromRotated = transformations.translation_matrix(np.array(joint.axis)* valuedict[jointname]) 
            
    parentFromRotated = np.dot(parentFromChild, childFromRotated)            
    originFromParent = conversions.pose_to_hmat(ps.pose)
    originFromRotated = np.dot(originFromParent, parentFromRotated)
    
    newps = gm.PoseStamped()
    newps.header = ps.header
    newps.pose = conversions.hmat_to_pose(originFromRotated)
    
    return make_kin_tree_from_link(newps,joint.child,ns=ns,valuedict=valuedict)
Exemplo n.º 4
0
def make_kin_tree_from_joint(ps, jointname, ns='default_ns', valuedict=None):
    rospy.logdebug("joint: %s" % jointname)
    U = get_pr2_urdf()

    joint = U.joints[jointname]
    joint.origin = joint.origin or urdf.Pose()
    if not joint.origin.position: joint.origin.position = [0, 0, 0]
    if not joint.origin.rotation: joint.origin.rotation = [0, 0, 0]

    parentFromChild = conversions.trans_rot_to_hmat(
        joint.origin.position,
        transformations.quaternion_from_euler(*joint.origin.rotation))

    childFromRotated = np.eye(4)
    if valuedict and jointname in valuedict:

        if joint.joint_type == 'revolute' or joint.joint_type == 'continuous':
            childFromRotated = transformations.rotation_matrix(
                valuedict[jointname], joint.axis)
        elif joint.joint_type == 'prismatic':
            childFromRotated = transformations.translation_matrix(
                np.array(joint.axis) * valuedict[jointname])

    parentFromRotated = np.dot(parentFromChild, childFromRotated)
    originFromParent = conversions.pose_to_hmat(ps.pose)
    originFromRotated = np.dot(originFromParent, parentFromRotated)

    newps = gm.PoseStamped()
    newps.header = ps.header
    newps.pose = conversions.hmat_to_pose(originFromRotated)

    return make_kin_tree_from_link(newps,
                                   joint.child,
                                   ns=ns,
                                   valuedict=valuedict)
def plot_demo_and_warped_tool_spec_pt(spec_pt_in_grip, tool_stage_data, demo_to_exp_tool_transform, arm):
    demo_tool_grip_to_world_transform = get_demo_tool_grip_to_world_transform(tool_stage_data, arm)
    demo_spec_pt_in_world = apply_mat_transform_to_xyz(demo_tool_grip_to_world_transform, spec_pt_in_grip)
    demo_spec_pt_in_world_frame = jut.translation_matrix(demo_spec_pt_in_world)
    plot_spec_pts(np.array([demo_spec_pt_in_world]), (1,0,0,1))

    warped_spec_pt_in_world_frame = apply_tps_transform_to_hmat(demo_to_exp_tool_transform, demo_spec_pt_in_world_frame)
    warped_spec_pt_in_world_trans, warped_spec_pt_in_world_rot = juc.hmat_to_trans_rot(warped_spec_pt_in_world_frame)
    plot_spec_pts(np.array([warped_spec_pt_in_world_trans]), (0,1,0,1))
def get_warped_grip_traj_mats(warped_spec_pt_traj_mats, tool_stage_data, demo_to_exp_tool_transform, spec_pt_in_grip, world_to_grip_transform_func, arm):
    if demo_to_exp_tool_transform is None:
        grip_to_spec_pt_transform = np.linalg.inv(jut.translation_matrix(spec_pt_in_grip))
    else:
        demo_tool_grip_to_world_transform = get_demo_tool_grip_to_world_transform(tool_stage_data, arm)
        demo_spec_pt_in_world = apply_mat_transform_to_xyz(demo_tool_grip_to_world_transform, spec_pt_in_grip)
        demo_spec_pt_in_world_frame = jut.translation_matrix(demo_spec_pt_in_world)
        # find the transformation from the new special point to the gripper frame
        warped_spec_pt_in_world_frame = apply_tps_transform_to_hmat(demo_to_exp_tool_transform, demo_spec_pt_in_world_frame)
        warped_spec_pt_in_world_trans, warped_spec_pt_in_world_rot = juc.hmat_to_trans_rot(warped_spec_pt_in_world_frame)
        warped_spec_pt_in_grip_trans = world_to_grip_transform_func(warped_spec_pt_in_world_trans)
        warped_spec_pt_in_grip_rot = warped_spec_pt_in_world_rot
        warped_spec_pt_in_grip_frame = juc.trans_rot_to_hmat(warped_spec_pt_in_grip_trans, warped_spec_pt_in_grip_rot)
        print_hmat_info(warped_spec_pt_in_grip_frame, "warped_spec_pt_in_grip_frame")
        # transform the warped special point trajectory back to a gripper trajectory in the experiment
        grip_to_spec_pt_transform = np.linalg.inv(warped_spec_pt_in_grip_frame)
    warped_grip_traj_mats = [np.dot(spec_pt_mat, grip_to_spec_pt_transform) for spec_pt_mat in warped_spec_pt_traj_mats]
    return warped_grip_traj_mats
Exemplo n.º 7
0
def plot_demo_and_warped_tool_spec_pt(spec_pt_in_grip, tool_stage_data, demo_to_exp_tool_transform, arm):
    demo_tool_grip_to_world_transform = get_demo_tool_grip_to_world_transform(tool_stage_data, arm)
    demo_spec_pt_in_world = apply_mat_transform_to_xyz(demo_tool_grip_to_world_transform, spec_pt_in_grip)
    demo_spec_pt_in_world_frame = jut.translation_matrix(demo_spec_pt_in_world)
    plot_spec_pts(np.array([demo_spec_pt_in_world]), (1,0,0,0.5))

    warped_spec_pt_in_world_frame = apply_tps_transform_to_hmat(demo_to_exp_tool_transform, demo_spec_pt_in_world_frame)
    warped_spec_pt_in_world_trans, warped_spec_pt_in_world_rot = juc.hmat_to_trans_rot(warped_spec_pt_in_world_frame)
    plot_spec_pts(np.array([warped_spec_pt_in_world_trans]), (0,1,0,0.5))
Exemplo n.º 8
0
def get_warped_grip_traj_mats(warped_spec_pt_traj_mats, tool_stage_data, demo_to_exp_tool_transform, spec_pt_in_grip, world_to_grip_transform_func, arm):
    if demo_to_exp_tool_transform is None:
        grip_to_spec_pt_transform = np.linalg.inv(jut.translation_matrix(spec_pt_in_grip))
    else:
        demo_tool_grip_to_world_transform = get_demo_tool_grip_to_world_transform(tool_stage_data, arm)
        demo_spec_pt_in_world = apply_mat_transform_to_xyz(demo_tool_grip_to_world_transform, spec_pt_in_grip)
        demo_spec_pt_in_world_frame = jut.translation_matrix(demo_spec_pt_in_world)
        # find the transformation from the new special point to the gripper frame
        warped_spec_pt_in_world_frame = apply_tps_transform_to_hmat(demo_to_exp_tool_transform, demo_spec_pt_in_world_frame)
        warped_spec_pt_in_world_trans, warped_spec_pt_in_world_rot = juc.hmat_to_trans_rot(warped_spec_pt_in_world_frame)
        warped_spec_pt_in_grip_trans = world_to_grip_transform_func(warped_spec_pt_in_world_trans)
        warped_spec_pt_in_grip_rot = warped_spec_pt_in_world_rot
        warped_spec_pt_in_grip_frame = juc.trans_rot_to_hmat(warped_spec_pt_in_grip_trans, warped_spec_pt_in_grip_rot)
        print_hmat_info(warped_spec_pt_in_grip_frame, "warped_spec_pt_in_grip_frame")
        # transform the warped special point trajectory back to a gripper trajectory in the experiment
        grip_to_spec_pt_transform = np.linalg.inv(warped_spec_pt_in_grip_frame)
    warped_grip_traj_mats = [np.dot(spec_pt_mat, grip_to_spec_pt_transform) for spec_pt_mat in warped_spec_pt_traj_mats]
    return warped_grip_traj_mats
Exemplo n.º 9
0
def get_expected_gripper_traj(special_point, expected_spec_pt_traj):
    exp_tool_spec_pt_translation = jut.translation_matrix(
        np.array(exp_tool_info.special_point))
    inv_exp_tool_spec_pt_translation = np.linalg.inv(
        exp_tool_spec_pt_translation)
    expected_gripper_traj = [
        np.dot(traj_mat, inv_exp_tool_spec_pt_translation)
        for traj_mat in expected_spec_pt_traj
    ]
    return expected_gripper_traj
def test_translation(demo_name, exp_name, data_dir):
    translation_test_init()

    verb_data_accessor = multi_item_verbs.VerbDataAccessor(test_info_dir=osp.join("test", TEST_DATA_DIR, data_dir))

    current_stage = 1

    # info and data for tool stage
    demo_tool_info = verb_data_accessor.get_stage_info(demo_name, current_stage-1)
    demo_tool_data = verb_data_accessor.get_demo_stage_data(demo_tool_info.stage_name)
    exp_tool_info = verb_data_accessor.get_stage_info(exp_name, current_stage-1)
    exp_tool_data = verb_data_accessor.get_demo_stage_data(exp_tool_info.stage_name)

    # info and data for target stage
    demo_target_info = verb_data_accessor.get_stage_info(demo_name, current_stage)
    demo_target_data = verb_data_accessor.get_demo_stage_data(demo_target_info.stage_name)
    exp_target_info = verb_data_accessor.get_stage_info(exp_name, current_stage)
    exp_target_data = verb_data_accessor.get_demo_stage_data(exp_target_info.stage_name)
    
    gripper_data_key = "%s_gripper_tool_frame" % demo_target_info.arms_used

    # point clouds of tool for demo and experiment
    exp_tool_pc = exp_tool_data["object_cloud"][exp_tool_info.item]["xyz"]
    exp_target_pc = exp_target_data["object_cloud"][exp_target_info.item]["xyz"]

    # calculate the transformation from the world frame to the gripper frame in the experiment scene
    world_to_grip_transform = get_world_to_grip_exp_transform(exp_tool_data, gripper_data_key)
    world_to_grip_transform_func = multi_item_make_verb_traj.make_world_to_grip_transform_hmat(world_to_grip_transform)

    warped_traj_resp = multi_item_make_verb_traj.make_traj_multi_stage_do_work(demo_name, exp_target_pc,
                                                                               None, current_stage,
                                                                               demo_tool_info, exp_tool_pc,
                                                                               verb_data_accessor, world_to_grip_transform_func,
                                                                               "tps")

    # assuming that the arms_used for the target stage is 'l' or 'r'
    if demo_target_info.arms_used == 'l':
        warped_grip_traj_mats = [juc.pose_to_hmat(pose) for pose in warped_traj_resp.traj.l_gripper_poses.poses]
    elif demo_target_info.arms_used == 'r':
        warped_grip_traj_mats = [juc.pose_to_hmat(pose) for pose in warped_traj_resp.traj.r_gripper_poses.poses]

    # get the manually measured transformation between the old and new target objects (just a translation for this test)
    params = get_test_params()
    actual_target_translation = jut.translation_matrix(params["translation"])

    # find the expected warped gripper trajectory using the manual translation measurement
    demo_spec_pt_traj_mats = get_demo_spec_pt_traj_mats(demo_tool_info, demo_target_data, gripper_data_key)
    expected_spec_pt_traj = [np.dot(actual_target_translation, traj_mat) for traj_mat in demo_spec_pt_traj_mats]
    expected_gripper_traj = get_expected_gripper_traj(exp_tool_info.special_point, expected_spec_pt_traj)

    result = similar_trajectories(expected_gripper_traj, warped_grip_traj_mats)
    report(result)
Exemplo n.º 11
0
def get_demo_spec_pt_traj_mats(demo_target_data, gripper_data_key):
    demo_grip_traj_xyzs = demo_target_data[gripper_data_key]["position"]
    demo_grip_traj_oriens = demo_target_data[gripper_data_key]["orientation"]
    demo_grip_traj_mats = [
        juc.trans_rot_to_hmat(trans, orien)
        for (trans, orien) in zip(demo_grip_traj_xyzs, demo_grip_traj_oriens)
    ]
    demo_tool_spec_pt_translation = jut.translation_matrix(
        np.array(demo_tool_info.special_point))
    demo_spec_pt_traj_mats = [
        np.dot(traj_mat, demo_tool_spec_pt_translation)
        for traj_mat in demo_grip_traj_mats
    ]
    return demo_spec_pt_traj_mats
Exemplo n.º 12
0
def test_translation(demo_name, exp_name, data_dir):
    translation_test_init()

    verb_data_accessor = multi_item_verbs.VerbDataAccessor(
        test_info_dir=osp.join("test", TEST_DATA_DIR, data_dir))

    current_stage = 1

    # info and data for tool stage
    demo_tool_info = verb_data_accessor.get_stage_info(demo_name,
                                                       current_stage - 1)
    demo_tool_data = verb_data_accessor.get_demo_stage_data(
        demo_tool_info.stage_name)
    exp_tool_info = verb_data_accessor.get_stage_info(exp_name,
                                                      current_stage - 1)
    exp_tool_data = verb_data_accessor.get_demo_stage_data(
        exp_tool_info.stage_name)

    # info and data for target stage
    demo_target_info = verb_data_accessor.get_stage_info(
        demo_name, current_stage)
    demo_target_data = verb_data_accessor.get_demo_stage_data(
        demo_target_info.stage_name)
    exp_target_info = verb_data_accessor.get_stage_info(
        exp_name, current_stage)
    exp_target_data = verb_data_accessor.get_demo_stage_data(
        exp_target_info.stage_name)

    gripper_data_key = "%s_gripper_tool_frame" % demo_target_info.arms_used

    # point clouds of tool for demo and experiment
    exp_tool_pc = exp_tool_data["object_cloud"][exp_tool_info.item]["xyz"]
    exp_target_pc = exp_target_data["object_cloud"][
        exp_target_info.item]["xyz"]

    # calculate the transformation from the world frame to the gripper frame in the experiment scene
    world_to_grip_transform = get_world_to_grip_exp_transform(
        exp_tool_data, gripper_data_key)
    world_to_grip_transform_func = multi_item_make_verb_traj.make_world_to_grip_transform_hmat(
        world_to_grip_transform)

    warped_traj_resp = multi_item_make_verb_traj.make_traj_multi_stage_do_work(
        demo_name, exp_target_pc, None, current_stage, demo_tool_info,
        exp_tool_pc, verb_data_accessor, world_to_grip_transform_func, "tps")

    # assuming that the arms_used for the target stage is 'l' or 'r'
    if demo_target_info.arms_used == 'l':
        warped_grip_traj_mats = [
            juc.pose_to_hmat(pose)
            for pose in warped_traj_resp.traj.l_gripper_poses.poses
        ]
    elif demo_target_info.arms_used == 'r':
        warped_grip_traj_mats = [
            juc.pose_to_hmat(pose)
            for pose in warped_traj_resp.traj.r_gripper_poses.poses
        ]

    # get the manually measured transformation between the old and new target objects (just a translation for this test)
    params = get_test_params()
    actual_target_translation = jut.translation_matrix(params["translation"])

    # find the expected warped gripper trajectory using the manual translation measurement
    demo_spec_pt_traj_mats = get_demo_spec_pt_traj_mats(
        demo_target_data, gripper_data_key)
    expected_spec_pt_traj = [
        np.dot(actual_target_translation, traj_mat)
        for traj_mat in demo_spec_pt_traj_mats
    ]
    expected_gripper_traj = get_expected_gripper_traj(
        exp_tool_info.special_point, expected_spec_pt_traj)

    result = similar_trajectories(expected_gripper_traj, warped_grip_traj_mats)
    report(result)
def get_expected_gripper_traj(special_point, expected_spec_pt_traj):
    exp_tool_spec_pt_translation = jut.translation_matrix(np.array(special_point))
    inv_exp_tool_spec_pt_translation = np.linalg.inv(exp_tool_spec_pt_translation)
    expected_gripper_traj = [np.dot(traj_mat, inv_exp_tool_spec_pt_translation) for traj_mat in expected_spec_pt_traj]
    return expected_gripper_traj
Exemplo n.º 14
0
def get_demo_spec_pt_traj_mats(demo_target_grip_traj_mats, spec_pt_in_grip):
    if np.all(spec_pt_in_grip == np.zeros(3)):
        return demo_target_grip_traj_mats
    grip_to_spec_pt_trans = jut.translation_matrix(spec_pt_in_grip)
    demo_spec_pt_traj_mats = [np.dot(gripper_mat, grip_to_spec_pt_trans) for gripper_mat in demo_target_grip_traj_mats]
    return demo_spec_pt_traj_mats
Exemplo n.º 15
0
def make_traj_multi_stage_do_work(current_stage_info, cur_exp_clouds, clouds_frame_id, stage_num, prev_stage_info, prev_exp_clouds, verb_data_accessor, to_gripper_frame_func=None):

    arms_used = current_stage_info.arms_used
    verb_stage_data = verb_data_accessor.get_demo_data(current_stage_info.stage_name)

    if stage_num == 0:
        # don't do any extra transformation for the first stage
        prev_demo_to_exp_grip_transform_lin_rigid = np.identity(4)
        # no special point translation for first stage since no tool yet
        special_point_translation = np.identity(4)
    elif stage_num > 0:

        # make sure that the tool stage only uses one arm (the one with the tool)
        assert arms_used in ['r', 'l']

        prev_stage_data = verb_data_accessor.get_demo_data(prev_stage_info.stage_name)
        prev_demo_pc = prev_stage_data["object_clouds"][prev_stage_info.item]["xyz"]
        prev_exp_pc = prev_exp_clouds[0]
        prev_demo_pc_down = voxel_downsample(prev_demo_pc, .02)
        prev_exp_pc_down = voxel_downsample(prev_exp_pc, .02)

        gripper_data_key = "%s_gripper_tool_frame" % (arms_used)

        # transform point cloud in base frame to gripper frame
        # assume right hand has the tool for now
        # use the last pose of the gripper in the stage to figure out the point cloud of the tool in the gripper frame when the tool was grabbed
        prev_demo_gripper_pos = prev_stage_data[gripper_data_key]["position"][-1]
        prev_demo_gripper_orien = prev_stage_data[gripper_data_key]["orientation"][-1]
        prev_demo_gripper_to_base_transform = juc.trans_rot_to_hmat(prev_demo_gripper_pos, prev_demo_gripper_orien)
        prev_demo_base_to_gripper_transform = np.linalg.inv(prev_demo_gripper_to_base_transform)
        prev_demo_pc_in_gripper_frame = np.array([apply_transform(prev_demo_base_to_gripper_transform, point) for point in prev_demo_pc_down])

        # get the new point cloud in the new gripper frame
        # prev_exp_pc_in_gripper_frame = [apply_transform(prev_exp_base_to_gripper_transform, point) for point in prev_exp_pc_down]
        if to_gripper_frame_func is None:
            prev_exp_pc_in_gripper_frame = to_gripper_frame_tf_listener(prev_exp_pc_down, gripper_data_key)
        else:
            prev_exp_pc_in_gripper_frame = to_gripper_frame_func(prev_exp_pc_down, gripper_data_key)

        # get the transformation from the new point cloud to the old point cloud for the previous stage
        prev_demo_to_exp_grip_transform = get_tps_transform(prev_demo_pc_in_gripper_frame, prev_exp_pc_in_gripper_frame)

        # transforms gripper trajectory point into special point trajectory point
        if prev_stage_info.special_point is None:
            # if there is no special point, linearize at origin
            prev_demo_to_exp_grip_transform_lin_rigid = lin_rigid_tps_transform(prev_demo_to_exp_grip_transform, np.zeros(3))
            # don't do a special point translation if there is no specified special point
            special_point_translation = np.identity(4)
        else:
            prev_demo_to_exp_grip_transform_lin_rigid = lin_rigid_tps_transform(prev_demo_to_exp_grip_transform, np.array(prev_stage_info.special_point))
            # translation from gripper pose in world frame to special point pose in world frame
            special_point_translation = jut.translation_matrix(np.array(prev_stage_info.special_point))

    if arms_used != 'b':
        arms_used_list = [arms_used]
    else:
        arms_used_list = ['r', 'l']

    warped_stage_data = group_to_dict(verb_stage_data) # deep copy it

    resp = MakeTrajectoryResponse()
    traj = resp.traj
    traj.arms_used = arms_used

    for arm in arms_used_list:

        gripper_data_key = "%s_gripper_tool_frame" % (arm)
        
        # find the special point trajectory before the target transformation
        cur_demo_gripper_traj_xyzs = verb_stage_data[gripper_data_key]["position"]
        cur_demo_gripper_traj_oriens = verb_stage_data[gripper_data_key]["orientation"]
        cur_demo_gripper_traj_mats = [juc.trans_rot_to_hmat(trans, orien) for (trans, orien) in zip(cur_demo_gripper_traj_xyzs, cur_demo_gripper_traj_oriens)]
        cur_mid_spec_pt_traj_mats = [np.dot(gripper_mat, special_point_translation) for gripper_mat in cur_demo_gripper_traj_mats]

        # find the transformation from the new special point to the gripper frame
        cur_exp_inv_special_point_transformation = np.linalg.inv(np.dot(prev_demo_to_exp_grip_transform_lin_rigid, special_point_translation))

        # save the demo special point traj for plotting
        plot_spec_pt_traj = []
        for gripper_mat in cur_demo_gripper_traj_mats:
            spec_pt_xyz, spec_pt_orien = juc.hmat_to_trans_rot(np.dot(gripper_mat, special_point_translation))
            plot_spec_pt_traj.append(spec_pt_xyz)

        print 'grip transform:'
        print prev_demo_to_exp_grip_transform_lin_rigid
        print 'special point translation:'
        print special_point_translation
        print 'inverse special point translation:'
        print cur_exp_inv_special_point_transformation

        # find the target transformation for the experiment scene
        demo_object_clouds = [verb_stage_data["object_clouds"][obj_name]["xyz"] for obj_name in verb_stage_data["object_clouds"].keys()]
        if len(demo_object_clouds) > 1:
            raise Exception("i don't know what to do with multiple object clouds")
        x_nd = voxel_downsample(demo_object_clouds[0], .02)
        y_md = voxel_downsample(cur_exp_clouds[0], .02)
        # transformation from old target object to new target object in world frame
        cur_demo_to_exp_transform = get_tps_transform(x_nd, y_md)

        # apply the target warping transformation to the special point trajectory
        cur_mid_spec_pt_traj_xyzs, cur_mid_spec_pt_traj_oriens = [], []
        for cur_mid_spec_pt_traj_mat in cur_mid_spec_pt_traj_mats:
            cur_mid_spec_pt_traj_xyz, cur_mid_spec_pt_traj_orien = juc.hmat_to_trans_rot(cur_mid_spec_pt_traj_mat)
            cur_mid_spec_pt_traj_xyzs.append(cur_mid_spec_pt_traj_xyz)
            cur_mid_spec_pt_traj_oriens.append(juc.quat2mat(cur_mid_spec_pt_traj_orien))
        cur_exp_spec_pt_traj_xyzs, cur_exp_spec_pt_traj_oriens = cur_demo_to_exp_transform.transform_frames(np.array(cur_mid_spec_pt_traj_xyzs), np.array(cur_mid_spec_pt_traj_oriens))
        plot_warped_spec_pt_traj = cur_exp_spec_pt_traj_xyzs #save the special point traj for plotting
        cur_exp_spec_pt_traj_mats = [juc.trans_rot_to_hmat(cur_exp_spec_pt_traj_xyz, mat2quat(cur_exp_spec_pt_traj_orien)) for cur_exp_spec_pt_traj_xyz, cur_exp_spec_pt_traj_orien in zip(cur_exp_spec_pt_traj_xyzs, cur_exp_spec_pt_traj_oriens)]

        # transform the warped special point trajectory back to a gripper trajectory in the experiment
        cur_exp_gripper_traj_mats = [np.dot(spec_pt_mat, cur_exp_inv_special_point_transformation) for spec_pt_mat in cur_exp_spec_pt_traj_mats]

        warped_stage_data[gripper_data_key]["position"] = []
        warped_stage_data[gripper_data_key]["orientation"] = []
        for exp_traj_mat in cur_exp_gripper_traj_mats:
            warped_pos, warped_orien = juc.hmat_to_trans_rot(exp_traj_mat)
            warped_stage_data[gripper_data_key]["position"].append(warped_pos)
            warped_stage_data[gripper_data_key]["orientation"].append(warped_orien)

        if arm == 'r':
            traj.r_gripper_poses.poses = xyzs_quats_to_poses(warped_stage_data[gripper_data_key]["position"], warped_stage_data[gripper_data_key]["orientation"])
            print "poses: ", len(traj.r_gripper_poses.poses)
            traj.r_gripper_angles = warped_stage_data["r_gripper_joint"]
            traj.r_gripper_poses.header.frame_id = clouds_frame_id
        elif arm == 'l':
            traj.l_gripper_poses.poses = xyzs_quats_to_poses(warped_stage_data[gripper_data_key]["position"], warped_stage_data[gripper_data_key]["orientation"])
            print "poses: ", len(traj.l_gripper_poses.poses)
            traj.l_gripper_angles = warped_stage_data["l_gripper_joint"]
            traj.l_gripper_poses.header.frame_id = clouds_frame_id

    Globals.handles = []
    plot_original_and_warped_demo_and_spec_pt(verb_stage_data, warped_stage_data, plot_spec_pt_traj, plot_warped_spec_pt_traj, traj)
    
    pose_array = conversions.array_to_pose_array(y_md, 'base_footprint')
    Globals.handles.append(Globals.rviz.draw_curve(pose_array, rgba = (0,0,1,1),width=.01,type=Marker.CUBE_LIST))
    return resp
Exemplo n.º 16
0
def get_demo_spec_pt_traj_mats(demo_target_grip_traj_mats, spec_pt_in_grip):
    if np.all(spec_pt_in_grip == np.zeros(3)):
        return demo_target_grip_traj_mats
    grip_to_spec_pt_trans = jut.translation_matrix(spec_pt_in_grip)
    demo_spec_pt_traj_mats = [np.dot(gripper_mat, grip_to_spec_pt_trans) for gripper_mat in demo_target_grip_traj_mats]
    return demo_spec_pt_traj_mats