Exemplo n.º 1
0
    def __init__(self, root, lmdir, maskdir, cmaskdir, mode="test", load_h=512, load_w=512):
        super().__init__()
        transform_ = [
            transform.Resize((load_h, load_w), Image.BICUBIC),
            transform.ImageNormalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
        ]
        self.transform = transform.Compose(transform_)
        transform_mask_ = [
            transform.Resize((load_h, load_w), Image.BICUBIC),
            transform.Gray(),
        ]
        self.transform_mask = transform.Compose(transform_mask_)

        self.files_A = sorted(glob.glob(root + "/*.*"))

        self.total_len = len(self.files_A)
        self.batch_size = None
        self.shuffle = False
        self.drop_last = False
        self.num_workers = None
        self.buffer_size = 512*1024*1024

        self.lmdir = lmdir
        self.maskdir = maskdir
        self.cmaskdir = cmaskdir
        self.load_h = load_h
Exemplo n.º 2
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('--batch_size', type=int, default=32)
    parser.add_argument('--epochs', type=int, default=50)
    parser.add_argument('--num_classes', type=int, default=130)

    parser.add_argument('--lr', type=float, default=2e-3)
    parser.add_argument('--weight_decay', type=float, default=1e-5)

    parser.add_argument('--resume', type=bool, default=False)
    parser.add_argument('--eval', type=bool, default=False)

    parser.add_argument('--dataroot', type=str, default='/content/drive/MyDrive/dogflg/data2/')
    parser.add_argument('--model_path', type=str, default='./best_model.bin')

    parser.add_argument('--sampleratio', type=float, default=0.8)

    args = parser.parse_args()
    
    transform_train = transform.Compose([
        transform.Resize((256, 256)),
        transform.CenterCrop(224),
        transform.RandomHorizontalFlip(),
        transform.ToTensor(),
        transform.ImageNormalize(0.485, 0.229),
        # transform.ImageNormalize(0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ])

    root_dir = args.dataroot
    train_loader = TsinghuaDog(root_dir, batch_size=args.batch_size, train=True, part='train', shuffle=True, transform=transform_train, sample_rate=args.sampleratio)

    transform_test = transform.Compose([
        transform.Resize((256, 256)),
        transform.CenterCrop(224),
        transform.ToTensor(),
        transform.ImageNormalize(0.485, 0.229),
        # transform.ImageNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ])
    val_loader = TsinghuaDog(root_dir, batch_size=args.batch_size, train=False, part='val', shuffle=False, transform=transform_test, sample_rate=args.sampleratio)

    epochs = args.epochs
    model = Net(num_classes=args.num_classes)
    lr = args.lr
    weight_decay = args.weight_decay
    optimizer = SGD(model.parameters(), lr=lr, momentum=0.99)
    if args.resume:
        model.load(args.model_path)
        print('model loaded', args.model_path)

    #random save for test
    #model.save(args.model_path)
    if args.eval:
        evaluate(model, val_loader, save_path=args.model_path)
        return 
    for epoch in range(epochs):
        train(model, train_loader, optimizer, epoch)
        evaluate(model, val_loader, epoch, save_path=args.model_path)
Exemplo n.º 3
0
    def test_not_pil_image(self):
        img = jt.random((30, 40, 3))
        result = transform.Compose([
            transform.RandomAffine(20),
            transform.ToTensor(),
        ])(img)

        img = jt.random((30, 40, 3))
        result = transform.Compose([
            transform.ToPILImage(),
            transform.Gray(),
            transform.Resize(20),
            transform.ToTensor(),
        ])(img)
Exemplo n.º 4
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('--batch_size', type=int, default=8)
    parser.add_argument('--epochs', type=int, default=50)
    parser.add_argument('--num_classes', type=int, default=130)

    parser.add_argument('--lr', type=float, default=2e-3)
    parser.add_argument('--weight_decay', type=float, default=1e-5)

    parser.add_argument('--resume', type=bool, default=False)
    parser.add_argument('--eval', type=bool, default=False)

    parser.add_argument('--dataroot', type=str, default='/home/gmh/dataset/TsinghuaDog/')
    parser.add_argument('--model_path', type=str, default='./best_model.pkl')

    args = parser.parse_args()
    
    transform_train = transform.Compose([
        transform.Resize((512, 512)),
        transform.RandomCrop(448),
        transform.RandomHorizontalFlip(),
        transform.ToTensor(),
        transform.ImageNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ])

    root_dir = args.dataroot
    train_loader = TsinghuaDog(root_dir, batch_size=16, train=True, part='train', shuffle=True, transform=transform_train)
    
    transform_test = transform.Compose([
        transform.Resize((512, 512)),
        transform.CenterCrop(448),
        transform.ToTensor(),
        transform.ImageNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ])
    val_loader = TsinghuaDog(root_dir, batch_size=16, train=False, part='val', shuffle=False, transform=transform_test)
    epochs = args.epochs
    model = Net(num_classes=args.num_classes)
    lr = args.lr
    weight_decay = args.weight_decay
    optimizer = SGD(model.parameters(), lr=lr, momentum=0.9) 
    if args.resume:
        model.load(args.model_path)
    if args.eval:
        evaluate(model, val_loader)
        return 
    for epoch in range(epochs):
        train(model, train_loader, optimizer, epoch)
        evaluate(model, val_loader, epoch)
Exemplo n.º 5
0
    def test_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
        owidth = random.randint(5, (width - 2) / 2) * 2

        img = np.ones([height, width, 3])
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        # imgnarrow = img[oh1:oh1 + oheight, ow1:ow1 + owidth, :]
        # imgnarrow.fill(0)
        img[oh1:oh1 + oheight, ow1:ow1 + owidth, :] = 0
        # img = jt.array(img)
        result = transform.Compose([
            transform.ToPILImage(),
            transform.CenterCrop((oheight, owidth)),
            transform.ToTensor(),
        ])(img)
        self.assertEqual(
            result.sum(), 0,
            f"height: {height} width: {width} oheight: {oheight} owdith: {owidth}"
        )
        oheight += 1
        owidth += 1
        result = transform.Compose([
            transform.ToPILImage(),
            transform.CenterCrop((oheight, owidth)),
            transform.ToTensor(),
        ])(img)
        sum1 = result.sum()
        # TODO: not pass
        # self.assertGreater(sum1, 1,
        #                    f"height: {height} width: {width} oheight: {oheight} owdith: {owidth}")
        oheight += 1
        owidth += 1
        result = transform.Compose([
            transform.ToPILImage(),
            transform.CenterCrop((oheight, owidth)),
            transform.ToTensor(),
        ])(img)
        sum2 = result.sum()
        self.assertGreater(
            sum2, 0,
            f"height: {height} width: {width} oheight: {oheight} owdith: {owidth}"
        )
        self.assertGreaterEqual(
            sum2, sum1,
            f"height: {height} width: {width} oheight: {oheight} owdith: {owidth}"
        )
    def build_transform(self):
        """
        Creates a basic transformation that was used to train the models
        """
        cfg = self.cfg

        # we are loading images with OpenCV, so we don't need to convert them
        # to BGR, they are already! So all we need to do is to normalize
        # by 255 if we want to convert to BGR255 format, or flip the channels
        # if we want it to be in RGB in [0-1] range.
        if cfg.INPUT.TO_BGR255:
            to_bgr_transform = T.Lambda(lambda x: x * 255)
        else:
            to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])

        normalize_transform = T.ImageNormalize(
            mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
        )
        min_size = cfg.INPUT.MIN_SIZE_TEST
        max_size = cfg.INPUT.MAX_SIZE_TEST
        transform = T.Compose(
            [
                T.ToPILImage(),
                Resize(min_size, max_size),
                T.ToTensor(),
                to_bgr_transform,
                normalize_transform,
            ]
        )
        return transform
Exemplo n.º 7
0
def main():
    best_acc1 = 0
    #TODO multi gpu
    if args.model == 'TNet26':
        model = TNet.Resnet26()
    elif args.model == 'TNet38':
        model = TNet.Resnet38()
    elif args.model == 'TNet50':
        model = TNet.Resnet50()
    elif args.model == 'Resnet26':
        model = jtmodels.__dict__['resnet26']()
    elif args.model == 'Resnet38':
        model = jtmodels.__dict__['resnet38']()
    elif args.model == 'Resnet50':
        model = jtmodels.__dict__['resnet50']()
    elif args.model == 'SAN10':
        model = san(sa_type = 0, layers=[2, 1, 2, 4, 1], kernels=[3, 7, 7, 7, 7], num_classes = 1000)
    elif args.model == 'SAN_TCN10':
        model = san_tcn(sa_type = 0, layers=[2, 1, 2, 4, 1], kernels=[3, 7, 7, 7, 7], num_classes = 1000)
    else:
        print("Model not found!")
        exit(0)
    if (args.use_pytorch_conv_init):
        pytorch_conv_init(model)

    model_path = os.path.join(args.save_path, 'model_best.pk')
    model.load(model_path)

    mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
    # val_transform = transform.Compose([transform.Resize(256), transform.CenterCrop(224), transform.ImageNormalize(mean, std)])
    # [transform diff from val!vvvv]
    val_transform = transform.Compose([transform.Resize(224), transform.ImageNormalize(mean, std)])
    val_loader = ImageFolder('input_images', val_transform).set_attrs(batch_size=args.batch_size_val, shuffle=False, num_workers=args.workers)
    test(val_loader, model)
Exemplo n.º 8
0
def get_transform(params, gray=False, mask=False):
    transform_ = []
    # resize
    transform_.append(
        transform.Resize((params['load_h'], params['load_w']), Image.BICUBIC))
    # flip
    if params['flip']:
        transform_.append(transform.Lambda(lambda img: transform.hflip(img)))
    if gray:
        transform_.append(transform.Gray())
    if mask:
        transform_.append(transform.ImageNormalize([
            0.,
        ], [
            1.,
        ]))
    else:
        if not gray:
            transform_.append(
                transform.ImageNormalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]))
        else:
            transform_.append(transform.ImageNormalize([
                0.5,
            ], [
                0.5,
            ]))
    return transform.Compose(transform_)
Exemplo n.º 9
0
 def test_RandomAffine(self):
     img = jt.random((30, 40, 3))
     result = transform.Compose([
         transform.ToPILImage(),
         transform.RandomAffine(20),
         transform.ToTensor(),
     ])(img)
Exemplo n.º 10
0
def get_loader(root_dir,
               label_file,
               batch_size,
               img_size=0,
               num_thread=4,
               pin=True,
               test=False,
               split='train'):
    if test is False:
        raise NotImplementedError
    else:
        transform = transforms.Compose([
            transforms.Resize((400, 400)),
            transforms.ToTensor(),
            transforms.ImageNormalize(mean=[0.485, 0.456, 0.406],
                                      std=[0.229, 0.224, 0.225])
        ])
        dataset = SemanLineDatasetTest(root_dir,
                                       label_file,
                                       transform=transform,
                                       t_transform=None)
    if test is False:
        raise NotImplementedError
    else:
        dataset.set_attrs(batch_size=batch_size, shuffle=False)
        print('Get dataset success.')
    return dataset
Exemplo n.º 11
0
def transforms_imagenet_train(
        img_size=224,
        scale=None,
        ratio=None,
        hflip=0.5,
        vflip=0.,
        interpolation='random',
        mean=(0.485, 0.456, 0.406),
        std=(0.229, 0.224, 0.225),
):
    """
    If separate==True, the transforms are returned as a tuple of 3 separate transforms
    for use in a mixing dataset that passes
     * all data through the first (primary) transform, called the 'clean' data
     * a portion of the data through the secondary transform
     * normalizes and converts the branches above with the third, final transform
    """
    scale = tuple(scale or (0.08, 1.0))  # default imagenet scale range
    ratio = tuple(ratio or (3. / 4., 4. / 3.))  # default imagenet ratio range
    primary_tfl = [
        RandomResizedCropAndInterpolation(img_size,
                                          scale=scale,
                                          ratio=ratio,
                                          interpolation=interpolation)
    ]
    if hflip > 0.:
        primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)]
    if vflip > 0.:
        primary_tfl += [transforms.RandomVerticalFlip(p=vflip)]

    final_tfl = [
        transforms.ToTensor(),
        transforms.ImageNormalize(mean=mean, std=std)
    ]
    return transforms.Compose(primary_tfl + final_tfl)
Exemplo n.º 12
0
 def test_TenCrop(self):
     img = jt.random((30, 40, 3))
     result = transform.Compose([
         transform.ToPILImage(),
         transform.TenCrop(20),
         transform.ToTensor(),
     ])(img)
Exemplo n.º 13
0
 def test_RandomPerspective(self):
     img = jt.random((30, 40, 3))
     result = transform.Compose([
         transform.ToPILImage(),
         transform.RandomPerspective(p=1),
         transform.ToTensor(),
     ])(img)
    def test_imagenet(self):
        train_loader = torch.utils.data.DataLoader(train_dataset,
                                                   batch_size=256,
                                                   shuffle=False)

        random.seed(0)
        tc_data = []
        for i, data in enumerate(train_loader):
            tc_data.append(data)
            print("get", data[0].shape)
            if i == check_num_batch: break

        from jittor.dataset.dataset import ImageFolder
        import jittor.transform as transform

        dataset = ImageFolder(traindir).set_attrs(batch_size=256,
                                                  shuffle=False)

        dataset.set_attrs(transform=transform.Compose([
            transform.RandomCropAndResize(224),
            transform.RandomHorizontalFlip(),
            transform.ImageNormalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
        ]))

        random.seed(0)

        for i, (images, labels) in enumerate(dataset):
            print("compare", i)
            assert np.allclose(images.numpy(), tc_data[i][0].numpy())
            assert np.allclose(labels.numpy(), tc_data[i][1].numpy())
            if i == check_num_batch: break
Exemplo n.º 15
0
 def __init__(self, root, transforms_=None, img_size=128, mask_size=64, mode="train"):
     super().__init__()
     self.transform = transform.Compose(transforms_)
     self.img_size = img_size
     self.mask_size = mask_size
     self.mode = mode
     self.files = sorted(glob.glob("%s/*.jpg" % root))
     self.files = self.files[:-4000] if mode == "train" else self.files[-4000:]
     self.set_attrs(total_len=len(self.files))
 def get_dataset():
     dataset = ImageFolder(traindir).set_attrs(batch_size=256,
                                               shuffle=False)
     dataset.set_attrs(transform=transform.Compose([
         transform.Resize(224),
         transform.ImageNormalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225])
     ]),
                       num_workers=0)
     return dataset
Exemplo n.º 17
0
    def test_resize(self):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        osize = random.randint(5, 12) * 2

        img = jt.ones([height, width, 3])
        result = transform.Compose([
            transform.ToPILImage(),
            transform.Resize(osize),
            transform.ToTensor(),
        ])(img)
        self.assertIn(osize, result.shape)
        if height < width:
            self.assertLessEqual(result.shape[1], result.shape[2])
        elif width < height:
            self.assertGreaterEqual(result.shape[1], result.shape[2])

        result = transform.Compose([
            transform.ToPILImage(),
            transform.Resize([osize, osize]),
            transform.ToTensor(),
        ])(img)
        self.assertIn(osize, result.shape)
        self.assertEqual(result.shape[1], osize)
        self.assertEqual(result.shape[2], osize)

        oheight = random.randint(5, 12) * 2
        owidth = random.randint(5, 12) * 2
        result = transform.Compose([
            transform.ToPILImage(),
            transform.Resize((oheight, owidth)),
            transform.ToTensor(),
        ])(img)
        self.assertEqual(result.shape[1], oheight)
        self.assertEqual(result.shape[2], owidth)

        result = transform.Compose([
            transform.ToPILImage(),
            transform.Resize([oheight, owidth]),
            transform.ToTensor(),
        ])(img)
        self.assertEqual(result.shape[1], oheight)
        self.assertEqual(result.shape[2], owidth)
Exemplo n.º 18
0
    def __init__(self, root, hr_shape):
        hr_height, hr_width = hr_shape
        # transform for low resolution images and high resolution images
        self.lr_transform = transform.Compose([
            transform.Resize((hr_height // 4, hr_height // 4), Image.BICUBIC),
            transform.ImageNormalize(mean, std),
        ])
        self.hr_transform = transform.Compose([
            transform.Resize((hr_height, hr_height), Image.BICUBIC),
            transform.ImageNormalize(mean, std),
        ])

        self.files = sorted(glob.glob(root + "/*.*"))
        self.total_len = len(self.files)
        self.batch_size = None
        self.shuffle = False
        self.drop_last = False
        self.num_workers = None
        self.buffer_size = 512 * 1024 * 1024
Exemplo n.º 19
0
    def __init__(self, root, transform_=None, mode="train", attributes=None):
        super().__init__()
        self.transform = transform.Compose(transform_)

        self.selected_attrs = attributes
        self.files = sorted(glob.glob("%s/images/*.jpg" % root))
        self.files = self.files[:-2000] if mode == "train" else self.files[
            -2000:]
        self.label_path = glob.glob("%s/*.txt" % root)[0]
        self.annotations = self.get_annotations()
        self.set_attrs(total_len=len(self.files))
Exemplo n.º 20
0
 def __init__(self, root, input_shape, mode="train"):
     self.transform = transform.Compose([
         transform.Resize(input_shape[-2:]),
         transform.ImageNormalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
     ])
     self.files = sorted(glob.glob(os.path.join(root, mode) + "/*.*"))
     self.total_len = len(self.files)
     self.batch_size = None
     self.shuffle = False
     self.drop_last = False
     self.num_workers = None
     self.buffer_size = 512 * 1024 * 1024
Exemplo n.º 21
0
 def __init__(self, root, transforms_=None, unaligned=False, mode="train"):
     self.transform = transform.Compose(transforms_)
     self.unaligned = unaligned
     self.files_A = sorted(
         glob.glob(os.path.join(root, "%s/A" % mode) + "/*.*"))
     self.files_B = sorted(
         glob.glob(os.path.join(root, "%s/B" % mode) + "/*.*"))
     self.total_len = max(len(self.files_A), len(self.files_B))
     self.batch_size = None
     self.shuffle = False
     self.drop_last = False
     self.num_workers = None
     self.buffer_size = 512 * 1024 * 1024
Exemplo n.º 22
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('--batch_size', type=int, default=8)
    parser.add_argument('--epochs', type=int, default=50)
    parser.add_argument('--num_classes', type=int, default=130)

    parser.add_argument('--lr', type=float, default=2e-3)
    parser.add_argument('--weight_decay', type=float, default=1e-5)

    parser.add_argument('--resume', type=bool, default=True)
    parser.add_argument('--eval', type=bool, default=False)

    parser.add_argument('--dataroot',
                        type=str,
                        default='/content/drive/MyDrive/dogfl/data/TEST_A/')
    parser.add_argument('--model_path', type=str, default='./best_model.bin')
    parser.add_argument('--out_file', type=str, default='./result.json')

    args = parser.parse_args()

    root_dir = args.dataroot

    transform_test = transform.Compose([
        transform.Resize((512, 512)),
        transform.CenterCrop(448),
        transform.ToTensor(),
        transform.ImageNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ])

    name_list = []
    for _, _, _name_list in os.walk(root_dir):
        name_list = _name_list
    val_loader = TsinghuaDogExam(root_dir,
                                 batch_size=args.batch_size,
                                 train=False,
                                 name_list=name_list,
                                 shuffle=False,
                                 transform=transform_test)

    model = Net(num_classes=args.num_classes)
    if args.resume:
        model.load(args.model_path)
        print('model loaded', args.model_path)

    top5_class_list = evaluate(model, val_loader)
    # label start from 1, however it doesn't
    pred_result = dict(zip(name_list, top5_class_list))

    with open(args.out_file, 'w') as fout:
        json.dump(pred_result, fout, ensure_ascii=False, indent=4)
Exemplo n.º 23
0
def get_transform(new_size=None):
    """
    obtain the image transforms required for the input data
    :param new_size: size of the resized images
    :return: image_transform => transform object from TorchVision
    """
    # from torchvision.transforms import ToTensor, Normalize, Compose, Resize, RandomHorizontalFlip

    if new_size is not None:
        image_transform = transform.Compose([
            transform.RandomHorizontalFlip(),
            transform.Resize(new_size),
            transform.ToTensor(),
            transform.ImageNormalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
        ])

    else:
        image_transform = transform.Compose([
            transform.RandomHorizontalFlip(),
            transform.ToTensor(),
            transform.ImageNormalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
        ])
    return image_transform
Exemplo n.º 24
0
def im_detect_bbox(model, images, target_scale, target_max_size):
    """
    Performs bbox detection on the original image.
    """
    transform = TT.Compose([
        T.Resize(target_scale, target_max_size),
        TT.ToTensor(),
        T.Normalize(mean=cfg.INPUT.PIXEL_MEAN,
                    std=cfg.INPUT.PIXEL_STD,
                    to_bgr255=cfg.INPUT.TO_BGR255)
    ])
    images = [transform(image) for image in images]
    images = to_image_list(images, cfg.DATALOADER.SIZE_DIVISIBILITY)
    return model(images)
Exemplo n.º 25
0
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
        owidth = random.randint(5, (width - 2) / 2) * 2
        img = np.ones((height, width, 3))
        result = transform.Compose([
            transform.ToPILImage(),
            transform.RandomCrop((oheight, owidth)),
            transform.ToTensor(),
        ])(img)
        self.assertEqual(result.shape[1], oheight)
        self.assertEqual(result.shape[2], owidth)

        result = transform.Compose([
            transform.ToPILImage(),
            transform.RandomCrop((oheight, owidth)),
            transform.ToTensor(),
        ])(img)
        self.assertEqual(result.shape[1], oheight)
        self.assertEqual(result.shape[2], owidth)

        result = transform.Compose([
            transform.ToPILImage(),
            transform.RandomCrop((height, width)),
            transform.ToTensor()
        ])(img)
        self.assertEqual(result.shape[1], height)
        self.assertEqual(result.shape[2], width)
        self.assertTrue(np.allclose(img, result.transpose(1, 2, 0)))

        with self.assertRaises(AssertionError):
            result = transform.Compose([
                transform.ToPILImage(),
                transform.RandomCrop((height + 1, width + 1)),
                transform.ToTensor(),
            ])(img)
Exemplo n.º 26
0
    def build_transform():
        if cfg.INPUT.TO_BGR255:
            to_bgr_transform = T.Lambda(lambda x: x * 255)
        else:
            to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])

        normalize_transform = T.Normalize(mean=cfg.INPUT.PIXEL_MEAN,
                                          std=cfg.INPUT.PIXEL_STD)
        min_size = cfg.INPUT.MIN_SIZE_TEST
        max_size = cfg.INPUT.MAX_SIZE_TEST
        transform = T.Compose([
            T.ToPILImage(),
            Resize(min_size, max_size),
            T.ToTensor(),
            to_bgr_transform,
            normalize_transform,
        ])
        return transform
Exemplo n.º 27
0
def im_detect_bbox_hflip(model, images, target_scale, target_max_size):
    """
    Performs bbox detection on the horizontally flipped image.
    Function signature is the same as for im_detect_bbox.
    """
    transform = TT.Compose([
        T.Resize(target_scale, target_max_size),
        TT.RandomHorizontalFlip(1.0),
        TT.ToTensor(),
        T.Normalize(mean=cfg.INPUT.PIXEL_MEAN,
                    std=cfg.INPUT.PIXEL_STD,
                    to_bgr255=cfg.INPUT.TO_BGR255)
    ])
    images = [transform(image) for image in images]
    images = to_image_list(images, cfg.DATALOADER.SIZE_DIVISIBILITY)
    boxlists = model(images)

    # Invert the detections computed on the flipped image
    boxlists_inv = [boxlist.transpose(0) for boxlist in boxlists]
    return boxlists_inv
Exemplo n.º 28
0
def transforms_imagenet_eval(img_size=224,
                             crop_pct=0.9,
                             interpolation=Image.BICUBIC,
                             mean=(0.485, 0.456, 0.406),
                             std=(0.229, 0.224, 0.225)):
    crop_pct = crop_pct or 0.875

    if isinstance(img_size, tuple):
        assert len(img_size) == 2
        if img_size[-1] == img_size[-2]:
            # fall-back to older behaviour so Resize scales to shortest edge if target is square
            scale_size = int(math.floor(img_size[0] / crop_pct))
        else:
            scale_size = tuple([int(x / crop_pct) for x in img_size])
    else:
        scale_size = int(math.floor(img_size / crop_pct))
    return transforms.Compose([
        Resize(scale_size, interpolation),
        transforms.CenterCrop(img_size),
        transforms.ToTensor(),
        transforms.ImageNormalize(mean=mean, std=std)
    ])
Exemplo n.º 29
0
def test_dataset():
    root = '/home/gmh/dataset/TsinghuaDog'
    part = 'train'
    # from torchvision import transforms
    rgb_mean = [0.5, 0.5, 0.5]
    rgb_std = [0.5, 0.5, 0.5]

    transform_val = transform.Compose([
        transform.Resize((299, 299)),
        transform.ToTensor(),
        transform.ImageNormalize(rgb_mean, rgb_std),
    ])

    dataloader = TsinghuaDog(root,
                             batch_size=16,
                             train=False,
                             part=part,
                             shuffle=True,
                             transform=transform_val)
    # def __init__(self, root_dir, batch_size, part='train', train=True, shuffle=False, transform=None, num_workers=1):

    for images, labels in dataloader:
        # print(images.size(),labels.size(),labels)
        pass
Exemplo n.º 30
0

# 损失函数:平方误差
# 调用方法:adversarial_loss(网络输出A, 分类标签B)
# 计算结果:(A-B)^2
adversarial_loss = nn.MSELoss()

generator = Generator()
discriminator = Discriminator()

# 导入MNIST数据集
from jittor.dataset.mnist import MNIST
import jittor.transform as transform
transform = transform.Compose([
    transform.Resize(opt.img_size),
    transform.Gray(),
    transform.ImageNormalize(mean=[0.5], std=[0.5]),
])
dataloader = MNIST(train=True,
                   transform=transform).set_attrs(batch_size=opt.batch_size,
                                                  shuffle=True)

optimizer_G = nn.Adam(generator.parameters(),
                      lr=opt.lr,
                      betas=(opt.b1, opt.b2))
optimizer_D = nn.Adam(discriminator.parameters(),
                      lr=opt.lr,
                      betas=(opt.b1, opt.b2))

from PIL import Image