Exemplo n.º 1
0
 def test_save_image(self):
     arr = jt.array(np.random.randn(16, 3, 10, 10))
     jt.save_image(arr, "/tmp/a.jpg")
Exemplo n.º 2
0
    parser.add_argument('--n_col',
                        type=int,
                        default=5,
                        help='number of columns of sample matrix')
    parser.add_argument('path', type=str, help='path to checkpoint file')

    args = parser.parse_args()

    generator = StyledGenerator(512)
    ckpt = jt.load(args.path)
    generator.load_state_dict(ckpt)
    generator.eval()

    mean_style = get_mean_style(generator)

    step = int(math.log(args.size, 2)) - 2

    img = sample(generator, step, mean_style, args.n_row * args.n_col)
    jt.save_image(img,
                  'style_mixing/sample.png',
                  nrow=args.n_col,
                  normalize=True,
                  range=(-1, 1))

    for j in range(20):
        img = style_mixing(generator, step, mean_style, args.n_col, args.n_row)
        jt.save_image(img,
                      f'style_mixing/sample_mixing_{j}.png',
                      nrow=args.n_col + 1,
                      normalize=True,
                      range=(-1, 1))
Exemplo n.º 3
0
 def test_save_image(self):
     arr = jt.array(np.random.randn(16, 3, 10, 10))
     jt.save_image(arr, jt.flags.cache_path + "/tmp/a.jpg")
Exemplo n.º 4
0
        used_sample += real_image.shape[0]

        if (i + 1) % 100 == 0:
            images = []

            gen_i, gen_j = (10, 5)

            with jt.no_grad():
                for _ in range(gen_i):
                    images.append(
                        g_running(jt.randn(gen_j, code_size),
                                  step=step,
                                  alpha=alpha).data)

            jt.save_image(
                jt.concat(images, 0),
                f'FFHQ/sample/{str(i + 1).zfill(6)}.png',
                nrow=gen_i,
                normalize=True,
                range=(-1, 1),
            )

        if (i + 1) % 10000 == 0:
            jt.save(g_running.state_dict(),
                    f'FFHQ/checkpoint/{str(i + 1).zfill(6)}.model')

        state_msg = (
            f'Size: {4 * 2 ** step}; G: {gen_loss_val:.3f}; D: {disc_loss_val:.3f};'
            f' Grad: {grad_loss_val:.3f}; Alpha: {alpha:.5f}')
        pbar.set_description(state_msg)