Exemplo n.º 1
0
    def execute(self, output_path: str = ''):
        self.algorithm.run()

        if output_path:
            file_name = os.path.join(output_path, 'FUN.{}.tsv'.format(self.run_tag))
            print_function_values_to_file(self.algorithm.get_result(), filename=file_name)

            file_name = os.path.join(output_path, 'VAR.{}.tsv'.format(self.run_tag))
            print_variables_to_file(self.algorithm.get_result(), filename=file_name)

            file_name = os.path.join(output_path, 'TIME.{}'.format(self.run_tag))
            with open(file_name, 'w+') as of:
                of.write(str(self.algorithm.total_computing_time))
        mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
        leaders=CrowdingDistanceArchive(100),
        termination_criterion=StoppingByEvaluations(max=max_evaluations)
    )

    algorithm.observable.register(observer=ProgressBarObserver(max=max_evaluations))

    algorithm.run()
    front = algorithm.get_result()

    label = algorithm.get_name() + "." + problem.get_name()

    # Plot front
    plot_front = Plot(plot_title='Pareto front approximation', reference_front=problem.reference_front,
                      axis_labels=problem.obj_labels)
    plot_front.plot(front, label=algorithm.label, filename=algorithm.get_name())

    # Plot interactive front
    plot_front = InteractivePlot(plot_title='Pareto front approximation', reference_front=problem.reference_front,
                                 axis_labels=problem.obj_labels)
    plot_front.plot(front, label=algorithm.label, filename=algorithm.get_name())

    # Save results to file
    print_function_values_to_file(front, 'FUN.' + algorithm.label)
    print_variables_to_file(front, 'VAR.' + algorithm.label)

    print('Algorithm (continuous problem): ' + algorithm.get_name())
    print('Problem: ' + problem.get_name())
    print('Computing time: ' + str(algorithm.total_computing_time))

Exemplo n.º 3
0
if __name__ == '__main__':
    problem = Rastrigin(10)

    max_evaluations = 50000
    algorithm = NSGAII(
        problem=problem,
        population_size=100,
        offspring_population_size=100,
        mutation=PolynomialMutation(probability=1.0 /
                                    problem.number_of_variables,
                                    distribution_index=20.0),
        crossover=SBXCrossover(probability=0.9, distribution_index=20.0),
        termination_criterion=StoppingByEvaluations(max=max_evaluations),
        dominance_comparator=DominanceComparator())

    algorithm.observable.register(observer=PrintObjectivesObserver(1000))

    algorithm.run()
    front = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(
        front, 'FUN.' + algorithm.get_name() + "-" + problem.get_name())
    print_variables_to_file(
        front, 'VAR.' + algorithm.get_name() + "-" + problem.get_name())

    print('Algorithm (continuous problem): ' + algorithm.get_name())
    print('Problem: ' + problem.get_name())
    print('Computing time: ' + str(algorithm.total_computing_time))
from jmetal.util.observer import PrintObjectivesObserver
from jmetal.util.solutions import print_function_values_to_file, print_variables_to_file
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == '__main__':
    problem = OneMax(number_of_bits=1024)

    max_evaluations = 10000
    algorithm = LocalSearch(
        problem=problem,
        mutation=BitFlipMutation(probability=1.0 / problem.number_of_bits),
        termination_criterion=StoppingByEvaluations(max=max_evaluations))

    objectives_observer = PrintObjectivesObserver(frequency=100)
    algorithm.observable.register(observer=objectives_observer)

    algorithm.run()
    result = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(
        result, 'FUN.' + algorithm.get_name() + "." + problem.get_name())
    print_variables_to_file(
        result, 'VAR.' + algorithm.get_name() + "." + problem.get_name())

    print('Algorithm: ' + algorithm.get_name())
    print('Problem: ' + problem.get_name())
    print('Solution: ' + result.get_binary_string())
    print('Fitness:  ' + str(result.objectives[0]))
    print('Computing time: ' + str(algorithm.total_computing_time))
Exemplo n.º 5
0
    algorithm.observable.register(
        observer=VisualizerObserver(reference_front=problem.reference_front,
                                    reference_point=reference_point))

    algorithm.run()
    front = algorithm.get_result()

    # Plot front
    plot_front = Plot(plot_title="Pareto front approximation",
                      reference_front=problem.reference_front,
                      axis_labels=problem.obj_labels)
    plot_front.plot(front,
                    label=algorithm.label,
                    filename=algorithm.get_name())

    # Plot interactive front
    plot_front = InteractivePlot(plot_title="Pareto front approximation",
                                 reference_front=problem.reference_front,
                                 axis_labels=problem.obj_labels)
    plot_front.plot(front,
                    label=algorithm.label,
                    filename=algorithm.get_name())

    # Save results to file
    print_function_values_to_file(front, "FUN." + algorithm.label)
    print_variables_to_file(front, "VAR." + algorithm.label)

    print(f"Algorithm: {algorithm.get_name()}")
    print(f"Problem: {problem.get_name()}")
    print(f"Computing time: {algorithm.total_computing_time}")
Exemplo n.º 6
0
    def train(self):
        problem = Ejemplo(X=self.Xtrain,
                          Y=self.Ytrain,
                          kernel=self.kernel,
                          gamma=self.gamma,
                          degree=self.degree,
                          C=self.C,
                          coef0=self.coef0)
        #problem.reference_front = read_solutions(filename='resources/reference_front/ZDT1.pf')

        max_evaluations = self.maxEvaluations
        algorithm = NSGAII(
            problem=problem,
            population_size=self.popsize,
            offspring_population_size=self.popsize,
            mutation=BitFlipMutation(probability=1.0 /
                                     np.shape(self.Xtrain)[0]),
            crossover=SPXCrossover(probability=1.0),
            termination_criterion=StoppingByEvaluations(max=max_evaluations))

        algorithm.observable.register(observer=ProgressBarObserver(
            max=max_evaluations))
        #algorithm.observable.register(observer=VisualizerObserver(reference_front=problem.reference_front))

        algorithm.run()
        front = algorithm.get_result()

        # Plot front
        plot_front = Plot(plot_title='Pareto front approximation',
                          reference_front=None,
                          axis_labels=problem.obj_labels)
        plot_front.plot(front,
                        label=algorithm.label,
                        filename=algorithm.get_name())

        # Plot interactive front
        plot_front = InteractivePlot(plot_title='Pareto front approximation',
                                     axis_labels=problem.obj_labels)
        plot_front.plot(front,
                        label=algorithm.label,
                        filename=algorithm.get_name())

        # Save results to file
        print_function_values_to_file(front, 'FUN.' + algorithm.label)
        print_variables_to_file(front, 'VAR.' + algorithm.label)
        print('Algorithm (continuous problem): ' + algorithm.get_name())

        # Get normalized matrix of results
        normed_matrix = normalize(
            list(map(lambda result: result.objectives, front)))

        # Get the sum of each objective results and select the best (min)
        scores = list(map(lambda item: sum(item), normed_matrix))
        solution = front[scores.index(min(scores))]

        self.instances = solution.variables[0]
        self.attributes = solution.variables[1]

        # Generate masks
        # Crop by characteristics and instances
        X = self.Xtrain[self.instances, :]
        X = X[:, self.attributes]
        Y = self.Ytrain[self.instances]

        self.model = SVC(gamma=self.gamma,
                         C=self.C,
                         degree=self.degree,
                         kernel=self.kernel)
        self.model.fit(X=X, y=Y)

        # write your code here
        return self.model
Exemplo n.º 7
0
from jmetal.algorithm.multiobjective.nsgaii import NSGAII
from jmetal.operator import SBXCrossover, PolynomialMutation
from jmetal.util.solutions import print_function_values_to_file, print_variables_to_file
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == '__main__':
    problem = ZDT1Modified()

    max_evaluations = 100

    algorithm = NSGAII(
        problem=problem,
        population_size=10,
        offspring_population_size=10,
        mutation=PolynomialMutation(probability=1.0 /
                                    problem.number_of_variables,
                                    distribution_index=20),
        crossover=SBXCrossover(probability=1.0, distribution_index=20),
        termination_criterion=StoppingByEvaluations(max=max_evaluations))

    algorithm.run()
    front = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(front, 'FUN.NSGAII.ZDT1')
    print_variables_to_file(front, 'VAR.NSGAII.ZDT1')

    print('Algorithm (continuous problem): ' + algorithm.get_name())
    print('Problem: ' + problem.get_name())
    print('Computing time: ' + str(algorithm.total_computing_time))
Exemplo n.º 8
0
    def train(self):
        problem = SVM_Problem(X=self.Xtrain, Y=self.Ytrain)
        #problem.reference_front = read_solutions(filename='resources/reference_front/ZDT1.pf')

        max_evaluations = self.maxEvaluations
        algorithm = NSGAII(
            problem=problem,
            population_size=self.popsize,
            offspring_population_size=self.popsize,
            mutation=PolynomialMutation(probability=1.0 /
                                        problem.number_of_variables,
                                        distribution_index=20),
            crossover=SBXCrossover(probability=1.0, distribution_index=20),
            termination_criterion=StoppingByEvaluations(max=max_evaluations))

        algorithm.observable.register(observer=ProgressBarObserver(
            max=max_evaluations))
        #algorithm.observable.register(observer=VisualizerObserver(reference_front=problem.reference_front))

        algorithm.run()
        front = algorithm.get_result()

        # Plot front
        plot_front = Plot(plot_title='Pareto front approximation',
                          reference_front=None,
                          axis_labels=problem.obj_labels)
        plot_front.plot(front,
                        label=algorithm.label,
                        filename=algorithm.get_name())

        # Plot interactive front
        plot_front = InteractivePlot(plot_title='Pareto front approximation',
                                     axis_labels=problem.obj_labels)
        plot_front.plot(front,
                        label=algorithm.label,
                        filename=algorithm.get_name())

        # Save results to file
        print_function_values_to_file(front, 'FUN.' + algorithm.label)
        print_variables_to_file(front, 'VAR.' + algorithm.label)
        print('Algorithm (continuous problem): ' + algorithm.get_name())

        print(
            "-----------------------------------------------------------------------------"
        )
        print('Problem: ' + problem.get_name())
        print('Computing time: ' + str(algorithm.total_computing_time))

        # Get normalized matrix of results
        normed_matrix = normalize(
            list(map(lambda result: result.objectives, front)))

        # Get the sum of each objective results and select the best (min)
        scores = list(map(lambda item: sum(item), normed_matrix))
        solution = front[scores.index(min(scores))]

        # Get our variables
        self.gamma = solution.variables[0]
        self.C = solution.variables[1]
        self.coef0 = solution.variables[2]
        self.degree = solution.variables[3]
        self.kernel = solution.variables[4]

        self.instances = solution.masks[0]
        self.attributes = solution.masks[1]

        # Select pick a random array with length of the variable
        X = self.Xtrain[self.instances, :]
        X = X[:, self.attributes]
        Y = self.Ytrain[self.instances]

        print(*front, sep=", ")

        # Contruct model
        self.model = SVM(Xtrain=X,
                         Ytrain=Y,
                         kernel=self.kernel,
                         C=self.C,
                         degree=self.degree,
                         coef0=self.coef0,
                         gamma=self.gamma,
                         seed=self.seed).train()

        print('Objectives: ', *solution.objectives, sep=", ")
        # write your code here
        return self.model