Exemplo n.º 1
0
def print_dct_diffs(cover, stego): 
    import jpeg_toolbox as jt

    def print_list(l, ln):
        mooc = 0
        for i in range(0, len(l), ln):
            print(l[i:i+ln])
            v = l[i:i+ln][0][2]
            if np.abs(v) > 1:
                mooc += 1

    #C_jpeg = JPEG(cover)
    C_jpeg = jt.load(cover)
    #S_jpeg = JPEG(stego)
    S_jpeg = jt.load(stego)
    #for i in range(C_jpeg.components()):
    for i in range(C_jpeg["jpeg_components"]):
        #C = C_jpeg.coeffs(i)
        #S = S_jpeg.coeffs(i)
        C = C_jpeg["coef_arrays"][i]
        S = S_jpeg["coef_arrays"][i]
        if C.shape!=S.shape:
            print("WARNING! channels with different size. Channel: ", i)
            continue
        D = S-C
        print("\nChannel "+str(i)+":")
        pairs = list(zip(C.ravel(), S.ravel(), D.ravel()))
        pairs_diff = [p for p in pairs if p[2]!=0]
        print_list(pairs_diff, 5)
Exemplo n.º 2
0
def jpeg_lsbr_unhide(image_stego_path, output_msg_path):

    img = jt.load(image_stego_path)

    dct = img["coef_arrays"][0]
    d1, d2 = dct.shape

    dct_copy = dct.copy()
    # Do not use 0 and 1 coefficients
    dct_copy[np.abs(dct_copy) == 1] = 0
    # Do not use the DC DCT coefficients
    dct_copy[::8, ::8] = 0
    # 1D array
    dct = dct.flatten()
    dct_copy = dct_copy.flatten()
    # Index of the DCT coefficients we can change
    idx = np.where(dct_copy != 0)[0]

    # Select a pseudorandom set of DCT coefficents to hide the message
    # TODO: payload limit
    # TODO: use a password as seed
    random.seed(0)
    random.shuffle(idx)
    l = len(idx)

    # Read and save message
    msg = dct[idx] % 2
    bits_to_msg_file(msg.astype('uint8').tolist(), output_msg_path)
Exemplo n.º 3
0
def jpeg_lsbr_hiderandom(image_path, alpha, image_stego_path):

    img = jt.load(image_path)

    dct = img["coef_arrays"][0]
    d1, d2 = dct.shape

    dct_copy = dct.copy()
    # Do not use 0 and 1 coefficients
    dct_copy[np.abs(dct_copy) == 1] = 0
    # Do not use the DC DCT coefficients
    dct_copy[::8, ::8] = 0
    # 1D array
    dct = dct.flatten()
    dct_copy = dct_copy.flatten()
    # Index of the DCT coefficients we can change
    idx = np.where(dct_copy != 0)[0]

    # Select a pseudorandom set of DCT coefficents to hide the message
    random.shuffle(idx)
    l = int(float(alpha) * len(idx))
    idx = idx[:l]
    msg = np.random.choice([0, 1], size=(l, ))

    # LSB replacement:
    # Put LSBs to 0
    dct[idx] = np.sign(dct[idx]) * (np.abs(dct[idx]) - np.abs(dct[idx] % 2))
    # Add the value of the message
    dct[idx] = np.sign(dct[idx]) * (np.abs(dct[idx]) + msg)

    # Reshape and save DCTs
    dct = dct.reshape((d1, d2))
    img["coef_arrays"][0] = dct
    jt.save(img, image_stego_path)
Exemplo n.º 4
0
def calibration(path, only_first_channel=False):
    tmpdir = tempfile.mkdtemp()
    predfile = os.path.join(tmpdir, 'img.jpg')
    os.system("convert -chop 4x4 " + path + " " + predfile)
    im_jpeg = jt.load(path)
    impred_jpeg = jt.load(predfile)
    shutil.rmtree(tmpdir)

    beta_list = []
    for i in range(im_jpeg["jpeg_components"]):
        dct_b = im_jpeg["coef_arrays"][i]
        dct_0 = impred_jpeg["coef_arrays"][i]
        b01 = beta_kl(dct_0, dct_b, 0, 1)
        b10 = beta_kl(dct_0, dct_b, 1, 0)
        b11 = beta_kl(dct_0, dct_b, 1, 1)
        beta = (b01 + b10 + b11) / 3
        beta_list.append(beta)
        if only_first_channel:
            break

    return beta_list
Exemplo n.º 5
0
def calibration_chisquare_mode(path):
    """ it used jpeg_toolbox """
    import jpeg_toolbox as jt

    tmpdir = tempfile.mkdtemp()
    predfile = os.path.join(tmpdir, 'img.jpg')
    os.system("convert -chop 4x4 "+path+" "+predfile)
    im_jpeg = jt.load(path)
    impred_jpeg = jt.load(predfile)
    shutil.rmtree(tmpdir)

    beta_list = []
    for i in range(im_jpeg["jpeg_components"]):
        dct = im_jpeg["coef_arrays"][i]
        dct_estim = impred_jpeg["coef_arrays"][i]
        
        p_list = []
        for k in range(4):
            for l in range(4):
                if (k, l) == (0, 0):
                    continue

                f_exp, f_obs = [], []
                for j in range(5):
                    h  = H_i(dct, k, l, j)
                    h_estim = H_i(dct_estim, k, l, j)
                    if h<5 or h_estim<5:
                        break
                    f_exp.append(h_estim)
                    f_obs.append(h)
                #print(f_exp, f_obs)

                chi, p = scipy.stats.chisquare(f_obs, f_exp)
                p_list.append(p)

        p = np.mean(p_list)
        if p < 0.05:
            print("Hidden data found in channel "+str(i)+". p-value:", np.round(p, 6))
        else:
            print("No hidden data found in channel "+str(i))
Exemplo n.º 6
0
def calibration_f5(path):
    """ it used jpeg_toolbox """
    import jpeg_toolbox as jt

    tmpdir = tempfile.mkdtemp()
    predfile = os.path.join(tmpdir, 'img.jpg')
    os.system("convert -chop 4x4 "+path+" "+predfile)
    im_jpeg = jt.load(path)
    impred_jpeg = jt.load(predfile)
    shutil.rmtree(tmpdir)

    beta_list = []
    for i in range(im_jpeg["jpeg_components"]):
        dct_b = im_jpeg["coef_arrays"][i]
        dct_0 = impred_jpeg["coef_arrays"][i]
        b01 = beta_kl(dct_0, dct_b, 0, 1)   
        b10 = beta_kl(dct_0, dct_b, 1, 0)   
        b11 = beta_kl(dct_0, dct_b, 1, 1)
        beta = (b01+b10+b11)/3
        if beta > 0.05:
            print("Hidden data found in channel "+str(i)+":", beta)
        else:
            print("No hidden data found in channel "+str(i))
Exemplo n.º 7
0
def jpeg_lsbr_hide(image_path, msg_path, image_stego_path):

    msg_bit_list = msg_file_to_bits("msg.txt")
    img = jt.load(image_path)

    dct = img["coef_arrays"][0]
    d1, d2 = dct.shape

    dct_copy = dct.copy()
    # Do not use 0 and 1 coefficients
    dct_copy[np.abs(dct_copy) == 1] = 0
    # Do not use the DC DCT coefficients
    dct_copy[::8, ::8] = 0
    # 1D array
    dct = dct.flatten()
    dct_copy = dct_copy.flatten()
    # Index of the DCT coefficients we can change
    idx = np.where(dct_copy != 0)[0]

    # Select a pseudorandom set of DCT coefficents to hide the message
    # TODO: payload limit
    # TODO: use a password as seed
    random.seed(0)
    random.shuffle(idx)
    l = min(len(idx), len(msg_bit_list))
    idx = idx[:l]
    msg = np.array(msg_bit_list[:l])

    # LSB replacement:
    # Put LSBs to 0
    dct[idx] = np.sign(dct[idx]) * (np.abs(dct[idx]) - np.abs(dct[idx] % 2))
    # Add the value of the message
    dct[idx] = np.sign(dct[idx]) * (np.abs(dct[idx]) + msg)

    # Reshape and save DCTs
    dct = dct.reshape((d1, d2))
    img["coef_arrays"][0] = dct
    jt.save(img, image_stego_path)
Exemplo n.º 8
0
#!/usr/bin/python3

import sys
import random
import numpy as np

# https://github.com/daniellerch/python-jpeg-toolbox
import jpeg_toolbox as jt

# Read image
img = jt.load("lena.jpg")

# Modify the coefficient in position (6,6) from channel 0
img["coef_arrays"][0][6, 6] += 1

# Save modified image
jt.save(img, "lena_stego.jpg")