def __init__(self, filename_obj, filename_ref): super(Model, self).__init__() # set template mesh texture_size = 4 self.template_mesh = jr.Mesh.from_obj(filename_obj, texture_res=texture_size, load_texture=True, dr_type='softras') self.vertices = (self.template_mesh.vertices).stop_grad() self.faces = self.template_mesh.faces.stop_grad() self.textures = self.template_mesh.textures.stop_grad() self.metallic_textures = jt.zeros( (1, self.faces.shape[1], texture_size * texture_size, 1)).float32() + 0.4 self.metallic_textures = self.metallic_textures.stop_grad() self.roughness_textures = jt.ones( (1, self.faces.shape[1], texture_size * texture_size, 1)).float32() # load reference image self.image_ref = jt.array( imread(filename_ref).astype('float32') / 255.).permute( 2, 0, 1).unsqueeze(0).stop_grad() # setup renderer self.renderer = jr.Renderer(dr_type='softras')
def main(): parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_render')) args = parser.parse_args() # other settings camera_distance = 2.732 elevation = 30 azimuth = 0 # load from Wavefront .obj file mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5 ,texture_type='surface', dr_type='softras') # create renderer with SoftRas renderer = jr.Renderer(dr_type='softras') os.makedirs(args.output_dir, exist_ok=True) #0.5 0.4 metallic_textures = jt.zeros((1, mesh.faces.shape[1], 5 * 5, 1)).float32() + 0.5 roughness_textures = jt.zeros((1, mesh.faces.shape[1], 5 * 5, 1)).float32() + 0.4 # draw object from different view loop = tqdm.tqdm(list(range(0, 360, 4))) writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') imgs = [] from PIL import Image for num, azimuth in enumerate(loop): # rest mesh to initial state mesh.reset_() loop.set_description('Drawing rotation') renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) rgb = renderer(mesh.vertices, mesh.faces, textures=mesh.textures, metallic_textures=metallic_textures, roughness_textures=roughness_textures) image = rgb.numpy()[0].transpose((1, 2, 0)) writer.append_data((255*image).astype(np.uint8)) writer.close() # draw object from different sigma and gamma loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() renderer.set_gamma(10**gamma_pow) renderer.set_sigma(10**(gamma_pow - 1)) loop.set_description('Drawing blurring') images = renderer(mesh.vertices, mesh.faces, textures=mesh.textures, metallic_textures=metallic_textures, roughness_textures=roughness_textures) image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) writer.close() # save to textured obj mesh.reset_() mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj'))
def main(): parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'source.npy')) parser.add_argument('-c', '--camera-input', type=str, default=os.path.join(data_dir, 'camera.npy')) parser.add_argument('-t', '--template-mesh', type=str, default=os.path.join(data_dir, 'obj/sphere/sphere_1352.obj')) parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_deform')) parser.add_argument('-b', '--batch-size', type=int, default=120) args = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) model = Model(args.template_mesh) renderer = jr.Renderer(image_size=64, sigma_val=1e-4, aggr_func_rgb='hard', camera_mode='look_at', viewing_angle=15, dr_type='softras') # read training images and camera poses images = np.load(args.filename_input).astype('float32') / 255. cameras = np.load(args.camera_input).astype('float32') optimizer = nn.Adam(model.parameters(), 0.01, betas=(0.5, 0.99)) camera_distances = jt.array(cameras[:, 0]) elevations = jt.array(cameras[:, 1]) viewpoints = jt.array(cameras[:, 2]) renderer.transform.set_eyes_from_angles(camera_distances, elevations, viewpoints) import time sta = time.time() loop = tqdm.tqdm(list(range(0, 1000))) writer = imageio.get_writer(os.path.join(args.output_dir, 'deform.gif'), mode='I') for i in loop: images_gt = jt.array(images) mesh, laplacian_loss, flatten_loss = model(args.batch_size) images_pred = renderer.render_mesh(mesh, mode='silhouettes') # optimize mesh with silhouette reprojection error and # geometry constraints loss = neg_iou_loss(images_pred, images_gt[:, 3]) + \ 0.03 * laplacian_loss + \ 0.0003 * flatten_loss loop.set_description('Loss: %.4f'%(loss.item())) optimizer.step(loss) if i % 100 == 0: image = images_pred.numpy()[0]#.transpose((1, 2, 0)) imageio.imsave(os.path.join(args.output_dir, 'deform_%05d.png'%i), (255*image).astype(np.uint8)) writer.append_data((255*image).astype(np.uint8)) # save optimized mesh model(1)[0].save_obj(os.path.join(args.output_dir, 'plane.obj'), save_texture=False) print(f"Cost {time.time() - sta} secs.")
def __init__(self, filename_obj, args): super(Model, self).__init__() self.encoder = Encoder(im_size=args.image_size) self.decoder = Decoder(filename_obj) self.renderer = jr.Renderer(image_size=args.image_size, sigma_val=args.sigma_val, aggr_func_rgb='hard', camera_mode='look_at', viewing_angle=15, dist_eps=1e-10, dr_type='softras') self.laplacian_loss = jr.LaplacianLoss(self.decoder.vertices_base, self.decoder.faces) self.flatten_loss = jr.FlattenLoss(self.decoder.faces)
def __init__(self, cfgs): self.image_size = cfgs.get('image_size', 64) self.min_depth = cfgs.get('min_depth', 0.9) self.max_depth = cfgs.get('max_depth', 1.1) self.rot_center_depth = cfgs.get('rot_center_depth', (self.min_depth + self.max_depth) / 2) self.fov = cfgs.get('fov', 10) self.tex_cube_size = cfgs.get('tex_cube_size', 2) self.renderer_min_depth = cfgs.get('renderer_min_depth', 0.1) self.renderer_max_depth = cfgs.get('renderer_max_depth', 10.) #### camera intrinsics # (u) (x) # d * K^-1 (v) = (y) # (1) (z) ## renderer for visualization R = [[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]] R = jt.array(R).float32() t = jt.zeros((1, 3)).float32() fx = (self.image_size - 1) / 2 / (math.tan( self.fov / 2 * math.pi / 180)) fy = (self.image_size - 1) / 2 / (math.tan( self.fov / 2 * math.pi / 180)) cx = (self.image_size - 1) / 2 cy = (self.image_size - 1) / 2 K = [[fx, 0., cx], [0., fy, cy], [0., 0., 1.]] self.inv_K = jt.array(np.linalg.inv( np.array(K))).unsqueeze(0).float32() K = jt.array(K).float32() self.K = K.unsqueeze(0) self.renderer = jr.Renderer(camera_mode='projection', light_intensity_ambient=1.0, light_intensity_directionals=0., K=self.K, R=R, t=t, near=self.renderer_min_depth, far=self.renderer_max_depth, image_size=self.image_size, orig_size=self.image_size, fill_back=True, background_color=[1, 1, 1], dr_type='n3mr')
def __init__(self, filename_obj, filename_ref): super(Model, self).__init__() # set template mesh self.template_mesh = jr.Mesh.from_obj(filename_obj, dr_type='softras') self.vertices = (self.template_mesh.vertices * 0.6).stop_grad() self.faces = self.template_mesh.faces.stop_grad() # self.textures = self.template_mesh.textures texture_size = 4 self.textures = jt.zeros((1, self.faces.shape[1], texture_size, texture_size, texture_size, 3)).float32() # load reference image self.image_ref = jt.array( imread(filename_ref).astype('float32') / 255.).permute( 2, 0, 1).unsqueeze(0).stop_grad() # setup renderer self.renderer = jr.Renderer(camera_mode='look_at', perspective=False, light_intensity_directionals=0.0, light_intensity_ambient=1.0, dr_type='softras')