Exemplo n.º 1
0
    def _apply(self, bof_msg, ch_msg):
        target_names = bof_msg.target_names
        assert target_names == ch_msg.target_names

        N_label = len(target_names)
        bof_proba = np.array(bof_msg.probabilities).reshape((-1, N_label))
        ch_proba = np.array(ch_msg.probabilities).reshape((-1, N_label))
        bof_weight = np.array([self.weight[n]['bof'] for n in target_names])
        ch_weight = np.array([self.weight[n]['color'] for n in target_names])
        y_proba = (bof_weight * bof_proba) + (ch_weight * ch_proba)

        # verification result for debug
        y_pred = np.argmax(y_proba, axis=-1)
        target_names = np.array(target_names)
        label_proba = [p[i] for p, i in zip(y_proba, y_pred)]
        # compose msg
        msg = ClassificationResult()
        msg.header = bof_msg.header
        msg.labels = y_pred
        msg.label_names = target_names[y_pred]
        msg.label_proba = label_proba
        msg.probabilities = y_proba.reshape(-1)
        msg.classifier = '<jsk_2015_05_baxter_apc.BoostObjectRecognition>'
        msg.target_names = target_names
        self.pub.publish(msg)
    def _apply(self, bof_msg, ch_msg):
        target_names = bof_msg.target_names
        assert target_names == ch_msg.target_names

        N_label = len(target_names)
        bof_proba = np.array(bof_msg.probabilities).reshape((-1, N_label))
        ch_proba = np.array(ch_msg.probabilities).reshape((-1, N_label))
        bof_weight = np.array([self.weight[n]['bof'] for n in target_names])
        ch_weight = np.array([self.weight[n]['color'] for n in target_names])
        y_proba = (bof_weight * bof_proba) + (ch_weight * ch_proba)

        # verification result for debug
        y_pred = np.argmax(y_proba, axis=-1)
        target_names = np.array(target_names)
        label_proba = [p[i] for p, i in zip(y_proba, y_pred)]
        # compose msg
        msg = ClassificationResult()
        msg.header = bof_msg.header
        msg.labels = y_pred
        msg.label_names = target_names[y_pred]
        msg.label_proba = label_proba
        msg.probabilities = y_proba.reshape(-1)
        msg.classifier = '<jsk_2015_05_baxter_apc.BoostObjectRecognition>'
        msg.target_names = target_names
        self.pub.publish(msg)
Exemplo n.º 3
0
 def _predict(self, img_msg, label_msg):
     # convert image
     bridge = cv_bridge.CvBridge()
     input_image = bridge.imgmsg_to_cv2(img_msg, 'rgb8')
     input_label = bridge.imgmsg_to_cv2(label_msg)
     # predict
     region_imgs = []
     for l in np.unique(input_label):
         if l == 0:  # bg_label
             continue
         mask = (input_label == l)
         region = jsk_recognition_utils.bounding_rect_of_mask(
             input_image, mask)
         region_imgs.append(region)
     y_proba = self.estimator.predict(region_imgs)
     target_names = np.array(jsk_apc2015_common.get_object_list())
     y_pred = np.argmax(y_proba, axis=-1)
     label_proba = [p[i] for p, i in zip(y_proba, y_pred)]
     # prepare message
     res = ClassificationResult()
     res.header = img_msg.header
     res.labels = y_pred
     res.label_names = target_names[y_pred]
     res.label_proba = label_proba
     res.probabilities = y_proba.reshape(-1)
     res.classifier = '<jsk_2015_05_baxter_apc.ColorHistogramFeatures>'
     res.target_names = target_names
     self._pub.publish(res)
Exemplo n.º 4
0
    def image_cb(self, msg):
        img = self.bridge.imgmsg_to_cv2(msg, desired_encoding='rgb8')
        # RGB -> BGR
        rospy.logdebug('start readtext')
        results = self.reader.readtext(img[:, :, ::-1])
        rospy.logdebug('end readtext')

        bboxes = []
        scores = []
        texts = []
        rect_msg = RectArray(header=msg.header)
        for result in results:
            bb = result[0]
            text = result[1]
            score = result[2]
            x_min = int(np.round(bb[0][0]))
            y_min = int(np.round(bb[0][1]))
            x_max = int(np.round(bb[2][0]))
            y_max = int(np.round(bb[2][1]))
            bboxes.append([y_min, x_min, y_max, x_max])
            texts.append(text)
            scores.append(score)
            rect = Rect(
                x=x_min, y=y_min,
                width=x_max - x_min, height=y_max - y_min)
            rect_msg.rects.append(rect)
        bboxes = np.array(bboxes)
        scores = np.array(scores)

        cls_msg = ClassificationResult(
            header=msg.header,
            classifier=self.classifier_name,
            target_names=texts,
            labels=np.arange(len(texts)),
            label_names=texts,
            label_proba=scores)

        self.pub_rects.publish(rect_msg)
        self.pub_class.publish(cls_msg)

        if self.visualize:
            fig = plt.figure(
                tight_layout={'pad': 0})
            ax = plt.Axes(fig, [0., 0., 1., 1.])
            ax.axis('off')
            fig.add_axes(ax)
            vis_bbox(
                img.transpose((2, 0, 1)),
                bboxes, np.arange(len(texts)), scores,
                label_names=texts, ax=ax)
            fig.canvas.draw()
            w, h = fig.canvas.get_width_height()
            vis_img = np.fromstring(
                fig.canvas.tostring_rgb(), dtype=np.uint8)
            vis_img.shape = (h, w, 3)
            fig.clf()
            plt.close()
            vis_msg = self.bridge.cv2_to_imgmsg(vis_img, 'rgb8')
            vis_msg.header = msg.header
            self.pub_image.publish(vis_msg)
 def cb(self, msg):
     label_name = msg.label_names[0]
     if label_name not in self.name_to_label:
         self.name_to_label[label_name] = msg.labels[0]
     # Filtering class for gesture recognition
     now_time = rospy.Time.now()
     if label_name != self.temporary_class:
         self.last_temporary_class_time = rospy.Time.now()
     self.temporary_class = label_name
     # Update continous class
     if (now_time - self.last_temporary_class_time).to_sec() > self.duration_thre:
         self.continuous_class = self.temporary_class
     # Publish continous msg
     probabilities = [0.0] * len(msg.probabilities)
     probabilities[0] = 1.0
     pubmsg = ClassificationResult(
         header=msg.header,
         labels=[self.name_to_label[self.continuous_class]],
         label_names=[self.continuous_class],
         label_proba=[1.0],
         probabilities=probabilities,
         classifier=msg.classifier,
         target_names=msg.target_names,
     )
     self.pub.publish(pubmsg)
Exemplo n.º 6
0
    def _recognize(self, imgmsg):
        bridge = cv_bridge.CvBridge()
        bgr = bridge.imgmsg_to_cv2(imgmsg, desired_encoding='bgr8')
        bgr = skimage.transform.resize(bgr, (224, 224), preserve_range=True)
        input_msg = bridge.cv2_to_imgmsg(bgr.astype(np.uint8), encoding='bgr8')
        input_msg.header = imgmsg.header
        self.pub_input.publish(input_msg)

        blob = (bgr - self.mean_bgr).transpose((2, 0, 1))
        x_data = np.array([blob], dtype=np.float32)
        if self.gpu != -1:
            x_data = cuda.to_gpu(x_data, device=self.gpu)
        x = Variable(x_data, volatile=True)

        self.model.train = False
        self.model(x)

        proba = cuda.to_cpu(self.model.pred.data)[0]
        label = np.argmax(proba)
        label_name = self.target_names[label]
        label_proba = proba[label]
        cls_msg = ClassificationResult(
            header=imgmsg.header,
            labels=[label],
            label_names=[label_name],
            label_proba=[label_proba],
            probabilities=proba,
            classifier=self.model_name,
            target_names=self.target_names,
        )
        self.pub.publish(cls_msg)
Exemplo n.º 7
0
    def _recognize(self, imgmsg, mask_msg=None):
        bridge = cv_bridge.CvBridge()
        bgr = bridge.imgmsg_to_cv2(imgmsg, desired_encoding='bgr8')
        if mask_msg is not None:
            mask = bridge.imgmsg_to_cv2(mask_msg)
            if mask.shape != bgr.shape[:2]:
                logerr_throttle(10,
                                'Size of input image and mask is different')
                return
            elif mask.size == 0:
                logerr_throttle(10, 'Size of input mask is 0')
                return
            bgr[mask < 128] = self.mean_bgr
        input_msg = bridge.cv2_to_imgmsg(bgr.astype(np.uint8), encoding='bgr8')
        input_msg.header = imgmsg.header
        self.pub_input.publish(input_msg)

        blob = (bgr - self.mean_bgr).transpose((2, 0, 1))
        x_data = np.array([blob], dtype=np.float32)
        if self.gpu != -1:
            x_data = chainer.cuda.to_gpu(x_data, device=self.gpu)
        x = Variable(x_data, volatile=True)

        self.model.train = False
        self.model(x)

        proba = chainer.cuda.to_cpu(self.model.proba.data)[0]
        cls_msg = ClassificationResult(header=imgmsg.header,
                                       labels=None,
                                       label_names=None,
                                       label_proba=None,
                                       probabilities=proba,
                                       target_names=self.target_names)
        self.pub.publish(cls_msg)
Exemplo n.º 8
0
    def image_cb(self, msg):
        img_orig = self.bridge.imgmsg_to_cv2(msg, desired_encoding='rgb8')
        img = np.asarray(img_orig) / 255
        H, W = img.shape[:2]
        h_step = self.patch_height * self.subsample
        w_step = self.patch_width * self.subsample
        h_idxs = np.arange(0, H, h_step)[:-1]
        w_idxs = np.arange(0, W, h_step)[:-1]
        results = []
        for y in h_idxs:
            for x in w_idxs:
                sub_img = img[y:y+h_step:self.subsample, x:x+w_step:self.subsample, :][np.newaxis, ...]
                self.interpreter.set_tensor(self.input_details[0]['index'], sub_img.astype(np.float32))
                self.interpreter.invoke()
                cls = self.interpreter.get_tensor(self.output_details[0]['index'])
                cls = [np.argmax(cls), np.max(cls)]
                results.append(cls)
        labels = np.asarray([p[0] for p in results])
        probs = np.asarray([p[1] for p in results])

        cls_msg = ClassificationResult(
            header=msg.header,
            classifier=self.classifier_name,
            target_names=self.label_names,
            labels=labels,
            label_names=[self.label_names[l] for l in labels],
            label_proba=probs)
        self.pub_classification.publish(cls_msg)

        if self.visualize:
            fig = plt.figure(tight_layout={'pad': 0})
            ax = plt.Axes(fig, [0., 0., 1., 1.])
            ax.axis('off')
            fig.add_axes(ax)
            clr = np.asarray([[1,0,0], [0,1,0], [0,0,1], [0,0,0]])
            idx = 0
            ax = vis_image(img_orig.transpose((2, 0, 1)), ax=ax)
            for y in h_idxs:
                for x in w_idxs:
                    ax.add_patch(plt.Rectangle(
                        (x,y),
                        self.patch_width * self.subsample,
                        self.patch_height * self.subsample,
                        fill=True,
                        facecolor=clr[labels[idx]],
                        linewidth=0,
                        alpha=0.3))
                    idx += 1
            fig.canvas.draw()
            w, h = fig.canvas.get_width_height()
            vis_img = np.fromstring(
                fig.canvas.tostring_rgb(), dtype=np.uint8)
            vis_img.shape = (h, w, 3)
            fig.clf()
            plt.close()
            vis_msg = self.bridge.cv2_to_imgmsg(vis_img, 'rgb8')
            # BUG: https://answers.ros.org/question/316362/sensor_msgsimage-generates-float-instead-of-int-with-python3/  # NOQA
            vis_msg.step = int(vis_msg.step)
            vis_msg.header = msg.header
            self.pub_image.publish(vis_msg)
 def _cb(self, imgmsg):
     bridge = cv_bridge.CvBridge()
     img = bridge.imgmsg_to_cv2(imgmsg)
     label, proba = self._classify(img)
     msg = ClassificationResult()
     msg.header = imgmsg.header
     msg.labels = [label]
     msg.label_names = [self.target_names[label]]
     msg.label_proba = [proba[label]]
     msg.probabilities = proba
     msg.classifier = self.classifier_name
     msg.target_names = self.target_names
     self.pub.publish(msg)
Exemplo n.º 10
0
    def image_cb(self, msg):
        img = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
        H, W = img.shape[:2]
        objs = self.engine.DetectWithImage(PIL.Image.fromarray(img),
                                           threshold=self.score_thresh,
                                           keep_aspect_ratio=True,
                                           relative_coord=True,
                                           top_k=self.top_k)

        bboxes = []
        scores = []
        labels = []
        rect_msg = RectArray(header=msg.header)
        for obj in objs:
            x_min, y_min, x_max, y_max = obj.bounding_box.flatten().tolist()
            x_min = int(np.round(x_min * W))
            y_min = int(np.round(y_min * H))
            x_max = int(np.round(x_max * W))
            y_max = int(np.round(y_max * H))
            bboxes.append([y_min, x_min, y_max, x_max])
            scores.append(obj.score)
            labels.append(self.label_ids.index(int(obj.label_id)))
            rect = Rect(x=x_min,
                        y=y_min,
                        width=x_max - x_min,
                        height=y_max - y_min)
            rect_msg.rects.append(rect)
        bboxes = np.array(bboxes)
        scores = np.array(scores)
        labels = np.array(labels)

        cls_msg = ClassificationResult(
            header=msg.header,
            classifier=self.classifier_name,
            target_names=self.label_names,
            labels=labels,
            label_names=[self.label_names[l] for l in labels],
            label_proba=scores)

        self.pub_rects.publish(rect_msg)
        self.pub_class.publish(cls_msg)

        if self.visualize:
            vis_img = img[:, :, ::-1].transpose(2, 0, 1)
            vis_bbox(vis_img,
                     bboxes,
                     labels,
                     scores,
                     label_names=self.label_names)
            fig = plt.gcf()
            fig.canvas.draw()
            w, h = fig.canvas.get_width_height()
            vis_img = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8)
            fig.clf()
            vis_img.shape = (h, w, 3)
            plt.close()
            vis_msg = self.bridge.cv2_to_imgmsg(vis_img, 'rgb8')
            vis_msg.header = msg.header
            self.pub_image.publish(vis_msg)
Exemplo n.º 11
0
    def _detect(self, imgmsg, rects_msg):
        bridge = cv_bridge.CvBridge()
        im_orig = bridge.imgmsg_to_cv2(imgmsg, desired_encoding='bgr8')
        im, im_scale = img_preprocessing(im_orig, self.pixel_means)
        rects_orig = jsk_recognition_utils.rects_msg_to_ndarray(rects_msg)
        if len(rects_orig) == 0:
            return
        rects = rects_orig * im_scale
        scores, bbox_pred = self._im_detect(im, rects)

        rects = RectArray(header=imgmsg.header)
        labels = []
        label_proba = []
        for cls_id in range(1, len(self.target_names)):
            _cls = scores[:, cls_id][:, np.newaxis]
            _bbx = bbox_pred[:, cls_id * 4:(cls_id + 1) * 4]
            dets = np.hstack((_bbx, _cls))
            keep = nms(dets, self.nms_thresh)
            dets = dets[keep, :]
            orig_rects = cuda.cupy.asnumpy(rects_orig)[keep, :]

            inds = np.where(dets[:, -1] >= self.conf_thresh)[0]

            for i in inds:
                _bbox = dets[i, :4]
                x1, y1, x2, y2 = orig_rects[i]
                width = x2 - x1
                height = y2 - y1
                center_x = x1 + 0.5 * width
                center_y = y1 + 0.5 * height

                dx, dy, dw, dh = _bbox
                _center_x = dx * width + center_x
                _center_y = dy * height + center_y
                _width = np.exp(dw) * width
                _height = np.exp(dh) * height

                x1 = _center_x - 0.5 * _width
                y1 = _center_y - 0.5 * _height
                x2 = _center_x + 0.5 * _width
                y2 = _center_y + 0.5 * _height
                rect = Rect(x=x1, y=y1, width=x2 - x1, height=y2 - y1)
                rects.rects.append(rect)
                labels.append(cls_id)
                label_proba.append(dets[:, -1][i])

        # publish classification result
        clss = ClassificationResult(
            header=imgmsg.header,
            classifier=self.classifier_name,
            target_names=self.target_names,
            labels=labels,
            label_names=[self.target_names[l] for l in labels],
            label_proba=label_proba,
        )
        self._pub_rects.publish(rects)
        self._pub_class.publish(clss)
Exemplo n.º 12
0
    def _recognize(self, imgmsg):
        bridge = cv_bridge.CvBridge()
        mono = bridge.imgmsg_to_cv2(imgmsg)
        bgr = img_jet(mono)
        bgr = skimage.transform.resize(bgr, (self.insize, self.insize),
                                       preserve_range=True)
        input_msg = bridge.cv2_to_imgmsg(bgr.astype(np.uint8), encoding='bgr8')
        input_msg.header = imgmsg.header
        self.pub_input.publish(input_msg)

        # (Height, Width, Channel) -> (Channel, Height, Width)
        # ###
        # print(type())
        # print(rgb.shape)
        # import cv2
        # cv2.imwrite('/home/naoya/test.png', rgb)
        # ###
        rgb = bgr.transpose((2, 0, 1))[::-1, :, :]
        rgb = self.dataset.process_image(rgb)
        x_data = np.array([rgb], dtype=np.float32)
        if self.gpu != -1:
            x_data = cuda.to_gpu(x_data, device=self.gpu)
        if LooseVersion(chainer.__version__) < LooseVersion('2.0.0'):
            x = Variable(x_data, volatile=True)
            self.model.train = False
            self.model(x)
        else:
            with chainer.using_config('train', False), \
                    chainer.no_backprop_mode():
                x = Variable(x_data)
                self.model(x)

        # swap_labels[label number in self.target_names]
        # -> label number in self.target_names_ordered
        swap_labels = [
            self.target_names_ordered.index(name) for name in self.target_names
        ]
        for i in range(len(swap_labels)):
            if not (i in swap_labels):
                rospy.logerr('Wrong target_names is given by rosparam.')
                exit()
        proba = cuda.to_cpu(self.model.pred.data)[0]
        proba_swapped = [proba[swap_labels[i]] for i, p in enumerate(proba)]
        label_swapped = np.argmax(proba_swapped)
        label_name = self.target_names[label_swapped]
        label_proba = proba_swapped[label_swapped]
        cls_msg = ClassificationResult(
            header=imgmsg.header,
            labels=[label_swapped],
            label_names=[label_name],
            label_proba=[label_proba],
            probabilities=proba_swapped,
            classifier=self.model_name,
            target_names=self.target_names,
        )
        self.pub.publish(cls_msg)
 def _cb(self, imgmsg):
     bridge = cv_bridge.CvBridge()
     img = bridge.imgmsg_to_cv2(imgmsg)
     label, proba = self._classify(img)
     msg = ClassificationResult()
     msg.header = imgmsg.header
     msg.labels = [label]
     msg.label_names = [self.target_names[label]]
     msg.label_proba = [proba[label]]
     msg.probabilities = proba
     msg.classifier = self.classifier_name
     msg.target_names = self.target_names
     self.pub.publish(msg)
 def publish_gender(self, header, results):
     target_names = ["Male", "Female"]
     labels = [0 if r["gender"] < 0.5 else 1 for r in results]
     msg = ClassificationResult(
         header=header,
         classifier=self.classifier_name,
         target_names=target_names,
         labels=labels,
         label_names=[target_names[l] for l in labels],
         label_proba=[r["detection"] for r in results],
     )
     self.pub_gender.publish(msg)
    def image_cb(self, msg):
        if not hasattr(self, 'engine'):
            return
        if self.transport_hint == 'compressed':
            np_arr = np.fromstring(msg.data, np.uint8)
            img = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
            img = img[:, :, ::-1]
        else:
            img = self.bridge.imgmsg_to_cv2(msg, desired_encoding='rgb8')

        points, key_names, visibles, bboxes, labels, scores \
            = self._estimate(img)

        poses_msg = PeoplePoseArray(header=msg.header)
        rects_msg = RectArray(header=msg.header)
        for point, key_name, visible, bbox, label, score in zip(
                points, key_names, visibles, bboxes, labels, scores):
            pose_msg = PeoplePose()
            for pt, key_nm, vs, sc in zip(point, key_name, visible, score):
                if vs:
                    key_y, key_x = pt
                    pose_msg.limb_names.append(key_nm)
                    pose_msg.scores.append(sc)
                    pose_msg.poses.append(
                        Pose(position=Point(x=key_x, y=key_y)))
            poses_msg.poses.append(pose_msg)
            y_min, x_min, y_max, x_max = bbox
            rect = Rect(x=x_min,
                        y=y_min,
                        width=x_max - x_min,
                        height=y_max - y_min)
            rects_msg.rects.append(rect)

        cls_msg = ClassificationResult(
            header=msg.header,
            classifier=self.classifier_name,
            target_names=self.label_names,
            labels=labels,
            label_names=[self.label_names[lbl] for lbl in labels],
            label_proba=[np.average(score) for score in scores])

        self.pub_pose.publish(poses_msg)
        self.pub_rects.publish(rects_msg)
        self.pub_class.publish(cls_msg)

        if self.enable_visualization:
            with self.lock:
                self.img = img
                self.header = msg.header
                self.points = points
                self.visibles = visibles
Exemplo n.º 16
0
 def _predict(self, msg):
     X = np.array(msg.data).reshape((-1, msg.vector_dim))
     normalize(X, copy=False)
     y_proba = self.clf.predict_proba(X)
     y_pred = np.argmax(y_proba, axis=-1)
     target_names = np.array(self.clf.target_names_)
     self._pub.publish(
         ClassificationResult(
             header=msg.header,
             labels=y_pred,
             label_names=target_names[y_pred],
             label_proba=y_proba[:, y_pred],
             probabilities=y_proba.reshape(-1),
             classifier=self.clf.__str__(),
             target_names=target_names,
         ))
    def _recognize(self, imgmsg, mask_msg=None):
        bridge = cv_bridge.CvBridge()
        bgr = bridge.imgmsg_to_cv2(imgmsg, desired_encoding='bgr8')
        if mask_msg is not None:
            mask = bridge.imgmsg_to_cv2(mask_msg)
            if mask.shape != bgr.shape[:2]:
                logerr_throttle(10,
                                'Size of input image and mask is different')
                return
            elif mask.size == 0:
                logerr_throttle(10, 'Size of input mask is 0')
                return
            bgr[mask == 0] = self.mean_bgr
        bgr = skimage.transform.resize(bgr, (self.insize, self.insize),
                                       preserve_range=True)
        input_msg = bridge.cv2_to_imgmsg(bgr.astype(np.uint8), encoding='bgr8')
        input_msg.header = imgmsg.header
        self.pub_input.publish(input_msg)

        blob = (bgr - self.mean_bgr).transpose((2, 0, 1))
        x_data = np.array([blob], dtype=np.float32)
        if self.gpu != -1:
            x_data = cuda.to_gpu(x_data, device=self.gpu)
        if LooseVersion(chainer.__version__) < LooseVersion('2.0.0'):
            x = Variable(x_data, volatile=True)
            self.model.train = False
            self.model(x)
        else:
            with chainer.using_config('train', False), \
                    chainer.no_backprop_mode():
                x = Variable(x_data)
                self.model(x)

        proba = cuda.to_cpu(self.model.pred.data)[0]
        label = np.argmax(proba)
        label_name = self.target_names[label]
        label_proba = proba[label]
        cls_msg = ClassificationResult(
            header=imgmsg.header,
            labels=[label],
            label_names=[label_name],
            label_proba=[label_proba],
            probabilities=proba,
            classifier=self.model_name,
            target_names=self.target_names,
        )
        self.pub.publish(cls_msg)
Exemplo n.º 18
0
    def callback(self, imgmsg, mask_msg):
        bridge = cv_bridge.CvBridge()
        img = bridge.imgmsg_to_cv2(imgmsg, desired_encoding='bgr8')
        mask = bridge.imgmsg_to_cv2(mask_msg, desired_encoding='mono8')
        if mask.ndim == 3:
            mask = np.squeeze(mask, axis=2)
        mask = mask >= 127  # uint8 -> bool

        img = img.astype(np.float64)
        img[mask] -= self.mean[mask]
        img[~mask] = 0

        img = img.transpose(2, 0, 1)
        img = img.astype(np.float32)
        x_data = np.asarray([img])
        if self.gpu >= 0:
            x_data = cuda.to_gpu(x_data)
        x = chainer.Variable(x_data)
        y = self.model(x)

        feat = cuda.to_cpu(y.data)
        feat = feat.squeeze(axis=(2, 3))
        X_query = feat

        y_pred_proba = self.knn.predict_proba(X_query)
        y_pred = np.argmax(y_pred_proba, axis=1)

        classes = self.knn.classes_
        target_names = self.target_names[classes]

        msg = ClassificationResult()
        msg.header = imgmsg.header
        msg.labels = y_pred.tolist()
        msg.label_names = target_names[y_pred].tolist()
        msg.label_proba = y_pred_proba[:, y_pred].flatten().tolist()
        msg.probabilities = y_pred_proba.flatten().tolist()
        msg.target_names = target_names.tolist()
        self.pub.publish(msg)
Exemplo n.º 19
0
    def image_cb(self, msg):
        if not hasattr(self, 'engine'):
            return
        if self.transport_hint == 'compressed':
            np_arr = np.fromstring(msg.data, np.uint8)
            img = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
            img = img[:, :, ::-1]
        else:
            img = self.bridge.imgmsg_to_cv2(msg, desired_encoding='rgb8')

        bboxes, labels, scores = self._detect(img)

        rect_msg = RectArray(header=msg.header)
        for bbox in bboxes:
            y_min, x_min, y_max, x_max = bbox
            rect = Rect(x=x_min,
                        y=y_min,
                        width=x_max - x_min,
                        height=y_max - y_min)
            rect_msg.rects.append(rect)

        cls_msg = ClassificationResult(
            header=msg.header,
            classifier=self.classifier_name,
            target_names=self.label_names,
            labels=labels,
            label_names=[self.label_names[lbl] for lbl in labels],
            label_proba=scores)

        self.pub_rects.publish(rect_msg)
        self.pub_class.publish(cls_msg)

        if self.enable_visualization:
            with self.lock:
                self.img = img
                self.header = msg.header
                self.bboxes = bboxes
                self.labels = labels
                self.scores = scores
    def callback(self, imgmsg, mask_msg):
        bridge = cv_bridge.CvBridge()
        img = bridge.imgmsg_to_cv2(imgmsg, desired_encoding='bgr8')
        mask = bridge.imgmsg_to_cv2(mask_msg, desired_encoding='mono8')
        if mask.ndim == 3:
            mask = np.squeeze(mask, axis=2)
        mask = mask >= 127  # uint8 -> bool

        img = img.astype(np.float64)
        img[mask] -= self.mean[mask]
        img[~mask] = 0

        img = img.transpose(2, 0, 1)
        img = img.astype(np.float32)
        x_data = np.asarray([img])
        if self.gpu >= 0:
            x_data = cuda.to_gpu(x_data)
        x = chainer.Variable(x_data)
        y = self.model(x)

        feat = cuda.to_cpu(y.data)
        feat = feat.squeeze(axis=(2, 3))
        X_query = feat

        y_pred_proba = self.knn.predict_proba(X_query)
        y_pred = np.argmax(y_pred_proba, axis=1)

        classes = self.knn.classes_
        target_names = self.target_names[classes]

        msg = ClassificationResult()
        msg.header = imgmsg.header
        msg.labels = y_pred.tolist()
        msg.label_names = target_names[y_pred].tolist()
        msg.label_proba = y_pred_proba[:, y_pred].flatten().tolist()
        msg.probabilities = y_pred_proba.flatten().tolist()
        msg.target_names = target_names.tolist()
        self.pub.publish(msg)
Exemplo n.º 21
0
    def callback(self, imgmsg):
        bridge = cv_bridge.CvBridge()
        img = bridge.imgmsg_to_cv2(imgmsg, desired_encoding='rgb8')
        img_chw = img.transpose(2, 0, 1)  # C, H, W

        bboxes, masks, labels, scores = self.model.predict([img_chw])
        bboxes = bboxes[0]
        masks = masks[0]
        labels = labels[0]
        scores = scores[0]

        msg_indices = ClusterPointIndices(header=imgmsg.header)
        msg_labels = LabelArray(header=imgmsg.header)
        # -1: label for background
        lbl_cls = -np.ones(img.shape[:2], dtype=np.int32)
        lbl_ins = -np.ones(img.shape[:2], dtype=np.int32)
        for ins_id, (mask, label) in enumerate(zip(masks, labels)):
            indices = np.where(mask.flatten())[0]
            indices_msg = PointIndices(header=imgmsg.header, indices=indices)
            msg_indices.cluster_indices.append(indices_msg)
            class_name = self.fg_class_names[label]
            msg_labels.labels.append(Label(id=label, name=class_name))
            lbl_cls[mask] = label
            lbl_ins[mask] = ins_id  # instance_id
        self.pub_indices.publish(msg_indices)
        self.pub_labels.publish(msg_labels)

        msg_lbl_cls = bridge.cv2_to_imgmsg(lbl_cls)
        msg_lbl_ins = bridge.cv2_to_imgmsg(lbl_ins)
        msg_lbl_cls.header = msg_lbl_ins.header = imgmsg.header
        self.pub_lbl_cls.publish(msg_lbl_cls)
        self.pub_lbl_ins.publish(msg_lbl_ins)

        cls_msg = ClassificationResult(
            header=imgmsg.header,
            classifier=self.classifier_name,
            target_names=self.fg_class_names,
            labels=labels,
            label_names=[self.fg_class_names[l] for l in labels],
            label_proba=scores,
        )

        rects_msg = RectArray(header=imgmsg.header)
        for bbox in bboxes:
            rect = Rect(x=bbox[1],
                        y=bbox[0],
                        width=bbox[3] - bbox[1],
                        height=bbox[2] - bbox[0])
            rects_msg.rects.append(rect)
        self.pub_rects.publish(rects_msg)
        self.pub_class.publish(cls_msg)

        if self.pub_viz.get_num_connections() > 0:
            n_fg_class = len(self.fg_class_names)
            captions = [
                '{:d}: {:s}'.format(l, self.fg_class_names[l]) for l in labels
            ]
            viz = chainer_mask_rcnn.utils.draw_instance_bboxes(
                img,
                bboxes,
                labels + 1,
                n_class=n_fg_class + 1,
                masks=masks,
                captions=captions)
            msg_viz = bridge.cv2_to_imgmsg(viz, encoding='rgb8')
            msg_viz.header = imgmsg.header
            self.pub_viz.publish(msg_viz)
Exemplo n.º 22
0
    def image_cb(self, msg):
        img = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
        H, W = img.shape[:2]
        objs = self.engine.DetectWithImage(
            PIL.Image.fromarray(img), threshold=self.score_thresh,
            keep_aspect_ratio=True, relative_coord=True,
            top_k=self.top_k)

        bboxes = []
        scores = []
        labels = []
        rect_msg = RectArray(header=msg.header)
        for obj in objs:
            x_min, y_min, x_max, y_max = obj.bounding_box.flatten().tolist()
            x_min = int(np.round(x_min * W))
            y_min = int(np.round(y_min * H))
            x_max = int(np.round(x_max * W))
            y_max = int(np.round(y_max * H))
            bboxes.append([y_min, x_min, y_max, x_max])
            scores.append(obj.score)
            labels.append(self.label_ids.index(int(obj.label_id)))
            rect = Rect(
                x=x_min, y=y_min,
                width=x_max-x_min, height=y_max-y_min)
            rect_msg.rects.append(rect)
        bboxes = np.array(bboxes)
        scores = np.array(scores)
        labels = np.array(labels)

        cls_msg = ClassificationResult(
            header=msg.header,
            classifier=self.classifier_name,
            target_names=self.label_names,
            labels=labels,
            label_names=[self.label_names[l] for l in labels],
            label_proba=scores)

        self.pub_rects.publish(rect_msg)
        self.pub_class.publish(cls_msg)

        if self.visualize:
            fig = plt.figure(
                tight_layout={'pad': 0})
            ax = plt.Axes(fig, [0., 0., 1., 1.])
            ax.axis('off')
            fig.add_axes(ax)
            vis_bbox(
                img[:, :, ::-1].transpose((2, 0, 1)),
                bboxes, labels, scores,
                label_names=self.label_names, ax=ax)
            fig.canvas.draw()
            w, h = fig.canvas.get_width_height()
            vis_img = np.fromstring(
                fig.canvas.tostring_rgb(), dtype=np.uint8)
            vis_img.shape = (h, w, 3)
            fig.clf()
            plt.close()
            vis_msg = self.bridge.cv2_to_imgmsg(vis_img, 'rgb8')
            # BUG: https://answers.ros.org/question/316362/sensor_msgsimage-generates-float-instead-of-int-with-python3/  # NOQA
            vis_msg.step = int(vis_msg.step)
            vis_msg.header = msg.header
            self.pub_image.publish(vis_msg)
Exemplo n.º 23
0
    def image_cb(self, msg):
        if self.profiling:
            rospy.loginfo(
                "callback start: incomming msg is %s msec behind" %
                ((rospy.Time.now() - msg.header.stamp).to_sec() * 1000.0))
        tprev = time.time()
        try:
            # transform image to RGB, float, CHW
            img = self.cv_bridge.imgmsg_to_cv2(msg, desired_encoding="rgb8")
            img = np.asarray(img, dtype=np.float32)
            img = img.transpose(2, 0, 1)  # (H, W, C) -> (C, H, W)
        except Exception as e:
            rospy.logerr("Failed to convert image: %s" % str(e))
            return
        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("convert",
                                                   (tcur - tprev) * 1000))
            tprev = tcur

        bboxes, labels, scores = self.model.predict([img])
        bboxes, labels, scores = bboxes[0], labels[0], scores[0]

        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("predict",
                                                   (tcur - tprev) * 1000))
            tprev = tcur

        rect_msg = RectArray(header=msg.header)
        for bbox in bboxes:
            rect = Rect(x=bbox[1],
                        y=bbox[0],
                        width=bbox[3] - bbox[1],
                        height=bbox[2] - bbox[0])
            rect_msg.rects.append(rect)

        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("make rect msg",
                                                   (tcur - tprev) * 1000))
            tprev = tcur

        cls_msg = ClassificationResult(
            header=msg.header,
            classifier=self.classifier_name,
            target_names=self.label_names,
            labels=labels,
            label_names=[self.label_names[l] for l in labels],
            label_proba=scores,
        )

        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("make cls msg",
                                                   (tcur - tprev) * 1000))
            tprev = tcur

        self.pub_rects.publish(rect_msg)
        self.pub_class.publish(cls_msg)

        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("publish msg",
                                                   (tcur - tprev) * 1000))
            tprev = tcur

        if self.visualize:
            self.publish_bbox_image(img, bboxes, labels, scores)

        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("callback end",
                                                   (tcur - tprev) * 1000))
            tprev = tcur
Exemplo n.º 24
0
    def image_cb(self, msg):
        if self.profiling:
            rospy.loginfo(
                "callback start: incomming msg is %s msec behind" %
                ((rospy.Time.now() - msg.header.stamp).to_sec() * 1000.0))
        tprev = time.time()
        try:
            # transform image to RGB, float, CHW
            img = self.cv_bridge.imgmsg_to_cv2(msg, desired_encoding="rgb8")
            img = np.asarray(img, dtype=np.float32)
            img = img.transpose(2, 0, 1)  # (H, W, C) -> (C, H, W)
        except Exception as e:
            rospy.logerr("Failed to convert image: %s" % str(e))
            return
        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("convert",
                                                   (tcur - tprev) * 1000))
            tprev = tcur

        if self.gpu >= 0:
            chainer.cuda.get_device_from_id(self.gpu).use()
        bboxes, labels, scores = self.model.predict([img])
        bboxes, labels, scores = bboxes[0], labels[0], scores[0]

        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("predict",
                                                   (tcur - tprev) * 1000))
            tprev = tcur

        labels_msg = LabelArray(header=msg.header)
        for l in labels:
            l_name = self.label_names[l]
            labels_msg.labels.append(Label(id=l, name=l_name))

        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("make labels msg",
                                                   (tcur - tprev) * 1000))

        cluster_indices_msg = ClusterPointIndices(header=msg.header)
        H = img.shape[1]
        W = img.shape[2]
        for bbox in bboxes:
            ymin = max(0, int(np.floor(bbox[0])))
            xmin = max(0, int(np.floor(bbox[1])))
            ymax = min(H, int(np.ceil(bbox[2])))
            xmax = min(W, int(np.ceil(bbox[3])))
            indices = [
                range(W * y + xmin, W * y + xmax) for y in range(ymin, ymax)
            ]
            indices = np.array(indices, dtype=np.int32).flatten()
            indices_msg = PointIndices(header=msg.header, indices=indices)
            cluster_indices_msg.cluster_indices.append(indices_msg)

        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("make cluster_indices msg",
                                                   (tcur - tprev) * 1000))
            tprev = tcur

        rect_msg = RectArray(header=msg.header)
        for bbox in bboxes:
            rect = Rect(x=bbox[1],
                        y=bbox[0],
                        width=bbox[3] - bbox[1],
                        height=bbox[2] - bbox[0])
            rect_msg.rects.append(rect)

        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("make rect msg",
                                                   (tcur - tprev) * 1000))
            tprev = tcur

        cls_msg = ClassificationResult(
            header=msg.header,
            classifier=self.classifier_name,
            target_names=self.label_names,
            labels=labels,
            label_names=[self.label_names[l] for l in labels],
            label_proba=scores,
        )

        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("make cls msg",
                                                   (tcur - tprev) * 1000))
            tprev = tcur

        self.pub_labels.publish(labels_msg)
        self.pub_indices.publish(cluster_indices_msg)
        self.pub_rects.publish(rect_msg)
        self.pub_class.publish(cls_msg)

        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("publish msg",
                                                   (tcur - tprev) * 1000))
            tprev = tcur

        if self.visualize:
            self.publish_bbox_image(img, bboxes, labels, scores, msg.header)

        if self.profiling:
            tcur = time.time()
            rospy.loginfo("%s: elapsed %f msec" % ("callback end",
                                                   (tcur - tprev) * 1000))
            tprev = tcur