Exemplo n.º 1
0
    def LPLC2_LP_Filter(self):
        # myGroup = createGroupByAnnotation(self, 'LPLC2')

        # gets all skeletonNodes for each skeleton in the set
        self.getAllSkeletonNodes()

        LPnodesAvg = {}

        for i in self:
            if i.curColor is None:
                JN.autoSaveJSONColorGrad(self)

        # tests each node in a given skeleton for whether or not it is within the LP (based on a curve built from the points: (191994, 239560), (218895, 239680), (286360,230800), (318592,216920), (332166,209480) run through "mycurvefit.com"
        for x in self:
            LPnodes = []
            for i in x.skeletonNodes:
                if -16938980000 + (332993.6 + 16938980000) / (
                        1.0 + (i[2] / 379562.8)**25.65271) <= i[1]:
                    LPnodes.append(i)
            xCount = 0
            yCount = 0
            zCount = 0
            divisor = len(LPnodes)
            if divisor == 0:
                print(x.skeletonID)
                divisor = 1
            for i in LPnodes:
                xCount += i[0]
                yCount += i[1]
                zCount += i[2]
            xAvg = xCount / divisor
            yAvg = yCount / divisor
            zAvg = zCount / divisor
            LPnodesAvg[x.skeletonID] = [xAvg, yAvg, zAvg, x.curColor]
        return LPnodesAvg
Exemplo n.º 2
0
    def LC4_LO_Filter(self):

        if self[0].skeletonNodes is None:
            # gets all skeletonNodes for each skeleton in the set
            self.getAllSkeletonNodes()

        LOnodesAvg = {}

        for i in self:
            if i.curColor is None:
                JN.autoSaveJSONColorGrad(self)

        # tests each node in a given skeleton for whether or not it is within the LP (based on a curve built from
        #  the points: (191994, 239560), (218895, 239680), (286360,230800), (318592,216920), (332166,209480) run
        # through "mycurvefit.com"
        for x in self:
            LOtnid = []
            LOtnid = GN.getDownStreamNodes(skeletonID=x.skeletonID,
                                           tag='startOfLobula')

            LOnodes = []
            for tnid in LOtnid:
                if tnid in x.skeletonNodes:
                    LOnodes.append(x.skeletonNodes[tnid])

            xCount = 0
            yCount = 0
            zCount = 0
            divisor = len(LOnodes)
            if divisor == 0:
                print(x.skeletonID)
                divisor = 1
            for i in LOnodes:
                xCount += i[0]
                yCount += i[1]
                zCount += i[2]
            xAvg = xCount / divisor
            yAvg = yCount / divisor
            zAvg = zCount / divisor
            LOnodesAvg[x.skeletonID] = [xAvg, yAvg, zAvg, x.curColor]
        return LOnodesAvg
Exemplo n.º 3
0
 def colorByGradient(self):
     for i in self:
         if i.curColor is None:
             JN.autoSaveJSONColorGrad(self)
     return
Exemplo n.º 4
0
# e2c.makeCSV(myDNp02Set, 'saveGeneralSpecificAnnotations')

myDNp04Set = CN.builder(6958818)
DNp04LC4 = CN.createGroupByAnnotation(myDNp04Set, 'putative LC4 neuron')
DNp04LPLC2 = CN.createGroupByAnnotation(myDNp04Set, 'LPLC2')
sorted04LC4 = CN.sortBySynH2L(DNp04LC4)
sorted04LPLC2 = CN.sortBySynH2L(DNp04LPLC2)

# e2c.makeCSV(myDNp04Set, 'saveGeneralSpecificAnnotations')

myDNp11Set = CN.builder(5349447)
# print(myDNp02Set)
DNp11LC4 = CN.createGroupByAnnotation(myDNp11Set, 'putative LC4 neuron')
sorted11LC4 = CN.sortBySynH2L(DNp11LC4)

JN.autoSaveJSONColorGrad(DNp04LC4)

JN.autoSaveJSONColorGrad(DNp04LPLC2)

JN.autoSaveJSONColorGrad(DNp02LC4)

JN.autoSaveJSONColorGrad(DNp11LC4)

sorted02LC4.colorByGradient()
sorted04LC4.colorByGradient()
sorted11LC4.colorByGradient()

e2c.makeCSV(sorted02LC4, 'saveSKIDwithColor')
e2c.makeCSV(sorted04LC4, 'saveSKIDwithColor')
e2c.makeCSV(sorted11LC4, 'saveSKIDwithColor')