Exemplo n.º 1
0
    def test_inter_list_diversity_sample_given(self):
        metric = DiversityRecoMetrics.InterListDiversity(click_column='score', k=4, user_sample_size=2)
        results = metric.get_score(self.actual, self.predicted, batch_accumulate=False,
                                   return_extended_results=True)

        self.assertEqual(0.25, results['inter-list diversity'])
        self.assertEqual(2, results['support'])
Exemplo n.º 2
0
    def test_intra_list_diversity_sample_float(self):
        metric = DiversityRecoMetrics.IntraListDiversity(self.item_features, click_column='score', k=4,
                                                         user_sample_size=0.8)
        results = metric.get_score(self.actual, self.predicted, batch_accumulate=False, return_extended_results=True)

        self.assertEqual(0.268, np.round(results['intra-list diversity'], 3))
        self.assertEqual(2, results['support'])
Exemplo n.º 3
0
    def test_inter_list_diversity_metric_euclidean(self):
        metric = DiversityRecoMetrics.InterListDiversity(click_column='score', k=4, user_sample_size=0.8,
                                                         num_runs=10, n_jobs=-1, metric='euclidean')
        results = metric.get_score(self.actual, self.predicted, batch_accumulate=False, return_extended_results=True)

        self.assertEqual(round(results['inter-list diversity'], 4), 1.4142)
        self.assertEqual(results['support'], 2)
Exemplo n.º 4
0
    def test_intra_list_diversity_sample_one_item(self):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            metric = DiversityRecoMetrics.IntraListDiversity(self.item_features, click_column='score', k=1)
            results = metric.get_score(self.actual, self.predicted, batch_accumulate=False,
                                       return_extended_results=True)

            self.assertEqual(None, results)
Exemplo n.º 5
0
    def test_intra_list_diversity_sample_default(self):
        metric = DiversityRecoMetrics.IntraListDiversity(self.item_features, click_column='score', k=4)
        with warnings.catch_warnings(record=True) as w:
            results = metric.get_score(self.actual, self.predicted, batch_accumulate=False,
                                       return_extended_results=True)

        self.assertEqual(0.267, np.round(results['intra-list diversity'], 3))
        self.assertEqual(3, results['support'])
Exemplo n.º 6
0
    def test_inter_list_diversity_sample_one_user(self):
        metric = DiversityRecoMetrics.InterListDiversity(click_column='score', k=4, user_sample_size=1)
        with warnings.catch_warnings(record=True) as w:
            results = metric.get_score(self.actual, self.predicted, batch_accumulate=False,
                                       return_extended_results=True)
            self.assertEqual(str(w[0].message), "Inter-List Diversity will be nan when there is only one single user.")

        self.assertTrue(np.isnan(results['inter-list diversity']))
        self.assertEqual(1, results['support'])
Exemplo n.º 7
0
    def test_inter_list_diversity_sample_float_large(self):
        metric = DiversityRecoMetrics.InterListDiversity(click_column='score', k=4,
                                                         user_sample_size=1.1)
        with warnings.catch_warnings(record=True) as w:
            results = metric.get_score(self.actual, self.predicted, batch_accumulate=False,
                                       return_extended_results=True)

        self.assertEqual(0.25, results['inter-list diversity'])
        self.assertEqual(3, results['support'])
Exemplo n.º 8
0
    def test_intra_list_diversity_metric_euclidean(self):
        metric = DiversityRecoMetrics.IntraListDiversity(self.item_features, click_column='score', k=4,
                                                         metric='euclidean')
        with warnings.catch_warnings(record=True) as w:
            results = metric.get_score(self.actual, self.predicted, batch_accumulate=False,
                                       return_extended_results=True)

        self.assertEqual(round(results['intra-list diversity'], 3), 1.307)
        self.assertEqual(results['support'], 3)
Exemplo n.º 9
0
    def test_inter_list_diversity_sample_default(self):
        metric = DiversityRecoMetrics.InterListDiversity(click_column='score', k=4)
        with warnings.catch_warnings(record=True) as w:
            results = metric.get_score(self.actual, self.predicted, batch_accumulate=False,
                                       return_extended_results=True)
            self.assertEqual(str(w[0].message), "User_sample_size can not be larger than total number of users. "
                                                 "User_sample_size is set to be the total number of users.")

        self.assertEqual(0.25, results['inter-list diversity'])
        self.assertEqual(3, results['support'])
Exemplo n.º 10
0
    def test_inter_list_diversity_zero(self):
        actual = pd.DataFrame({Constants.user_id: [0, 1],
                               Constants.item_id: [0, 1],
                               'score': [1, 1]})
        predicted = pd.DataFrame({Constants.user_id: [0, 1],
                                  Constants.item_id: [1, 1],
                                  'score': [1, 1]})
        metric = DiversityRecoMetrics.InterListDiversity(click_column='score', k=4)
        with warnings.catch_warnings(record=True) as w:
            results = metric.get_score(actual, predicted, batch_accumulate=False,
                                       return_extended_results=True)

        self.assertEqual(results['inter-list diversity'], 0)
        self.assertEqual(2, results['support'])
Exemplo n.º 11
0
    def test_inter_list_diversity_negative_score(self):
        predicted = pd.DataFrame({Constants.user_id: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2],
                                  Constants.item_id: [0, 1, 2, 3,
                                                      0, 1, 2, 4,
                                                      0, 1, 2, 5
                                                      ],
                                  'score': [-0.9, 0.7, 0.6, 0.3,
                                            0.9, -0.7, 0.4, 0.1,
                                            0.9, 0.8, -0.6, 0.6
                                            ]
                                  })
        metric = DiversityRecoMetrics.InterListDiversity(click_column='score', k=4, user_sample_size=3)
        results = metric.get_score(self.actual, predicted, batch_accumulate=False,
                                   return_extended_results=True)

        self.assertEqual(results['inter-list diversity'], 0.25)
        self.assertEqual(3, results['support'])
Exemplo n.º 12
0
    def test_inter_list_diversity_in_use(self):
        actual = pd.DataFrame({
            Constants.user_id: [0, 0, 1, 2],
            Constants.item_id: [4, 5, 1, 4],
            'score': [True, True, True, True]
        })
        predicted = pd.DataFrame({
            Constants.user_id: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2],
            Constants.item_id: [0, 1, 2, 3, 0, 1, 2, 4, 0, 1, 2, 5],
            'score':
            [0.9, 0.7, 0.6, 0.3, 0.9, 0.7, 0.4, 0.1, 0.9, 0.8, 0.6, 0.6]
        })
        metrics = CombinedMetrics(
            RankingRecoMetrics.Recall(click_column='score', k=4),
            BinaryRecoMetrics.CTR(click_column='score', k=4),
            DiversityRecoMetrics.InterListDiversity(click_column='score',
                                                    k=4,
                                                    user_sample_size=2,
                                                    num_runs=5))

        acc_res = metrics.get_score(actual,
                                    predicted,
                                    batch_accumulate=False,
                                    return_extended_results=True)

        self.assertEqual(3, len(acc_res))
        self.assertEqual(
            0.25, acc_res['Inter-List Diversity@4']['inter-list diversity'])

        with self.assertRaises(ValueError):
            # This should fail when `batch_accumulate=True`, and `InterListDiversity` gets applied in combined metrics.
            batch_res, acc_res = metrics.get_score(
                actual,
                predicted,
                batch_accumulate=True,
                return_extended_results=True)
Exemplo n.º 13
0
 def test_intra_list_diversity_sample_int_zero(self):
     with self.assertRaises(ValueError):
         # This should fail when user_sample_size is set to be 0.
         metric = DiversityRecoMetrics.IntraListDiversity(self.item_features, click_column='score', k=4,
                                                          user_sample_size=0)
Exemplo n.º 14
0
 def test_inter_list_diversity_num_runs_float(self):
     with self.assertRaises(ValueError):
         # This should fail when num_runs is a float.
         metric = DiversityRecoMetrics.InterListDiversity(click_column='score', k=4,
                                                          user_sample_size=0.8, num_runs=0.3)
Exemplo n.º 15
0
 def test_inter_list_diversity_working_memory_float(self):
     with self.assertRaises(ValueError):
         # This should fail when working_memory=0.1
         metric = DiversityRecoMetrics.InterListDiversity(click_column='score', k=4, working_memory=0.1)
Exemplo n.º 16
0
    def test_inter_list_diversity_batch_accumulate_true(self):
        metric = DiversityRecoMetrics.InterListDiversity(click_column='score', k=4)

        with self.assertRaises(ValueError):
            # This should fail when `batch_accumulate=True`.
            results = metric.get_score(self.actual, self.predicted, batch_accumulate=True, return_extended_results=True)
Exemplo n.º 17
0
 def test_inter_list_diversity_sample_float_zero(self):
     with self.assertRaises(ValueError):
         # This should fail when user_sample_size is set t be 0.0.
         metric = DiversityRecoMetrics.InterListDiversity(click_column='score', k=4,
                                                          user_sample_size=0.0)
Exemplo n.º 18
0
 def test_intra_list_diversity_batch_accumulate_true(self):
     metric = DiversityRecoMetrics.IntraListDiversity(self.item_features, click_column='score', k=4)
     with warnings.catch_warnings(record=True) as w:
         results = metric.get_score(self.actual, self.predicted, batch_accumulate=True, return_extended_results=True)