Exemplo n.º 1
0
def test_fit_background_model():

    shape = (9, 5)
    image = np.arange(shape[0] * shape[1], dtype=np.float32).reshape(shape)
    x = 2
    j = 2

    b_lower = np.zeros(shape[1], dtype=np.float64) + 3.5    # 4, inclusive
    b_upper = np.zeros(shape[1], dtype=np.float64) + 4.5    # 4, inclusive
    bkglim = [[b_lower, b_upper]]
    bkg_order = 0

    (bkg_model, npts) = extract1d._fit_background_model(
                        image, x, j, bkglim, bkg_order)

    assert math.isclose(bkg_model(0.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(bkg_model(8.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert npts == 2

    image[:, 2] = np.nan

    (bkg_model, npts) = extract1d._fit_background_model(
                        image, x, j, bkglim, bkg_order)

    assert math.isclose(bkg_model(0.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(bkg_model(8.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert npts == 0
Exemplo n.º 2
0
def test_fit_background_model(inputs_constant):

    (bkg_model, npts) = extract1d._fit_background_model(*inputs_constant)

    assert math.isclose(bkg_model(0.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(bkg_model(8.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert npts == 2
Exemplo n.º 3
0
def test_handles_nan(inputs_constant):
    image, x, j, bkglim, bkg_order = inputs_constant
    image[:, 2] = np.nan

    (bkg_model, npts) = extract1d._fit_background_model(image, x, j, bkglim, bkg_order)

    assert math.isclose(bkg_model(0.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(bkg_model(8.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert npts == 0
Exemplo n.º 4
0
def test_handles_one_value(inputs_constant):
    image, x, j, bkglim, bkg_order = inputs_constant
    image[np.where(image == 22)] = np.nan   # During extraction, only two pixels are returned "normally"; set one to Nan

    # If only one data point is available, the polynomial fit is forced to 0
    bkg_model, npts = extract1d._fit_background_model(image, x, j, bkglim, bkg_order)

    assert math.isclose(bkg_model(0.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(bkg_model(8.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert npts == 0
Exemplo n.º 5
0
def test_fit_background_median(inputs_constant):
    image, x, j, bkglim, bkg_fit, bkg_order = inputs_constant
    bkg_fit = "median"

    (bkg_model,
     npts) = extract1d._fit_background_model(image, x, j, bkglim, bkg_fit,
                                             bkg_order)

    assert math.isclose(bkg_model(0.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(bkg_model(8.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert npts == 2
def test_fit_background_model(inputs_constant):

    (bkg_model, b_var_poisson_model, b_var_rnoise_model, b_var_flat_model, npts) = \
        extract1d._fit_background_model(*inputs_constant)

    assert math.isclose(bkg_model(0.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(bkg_model(8.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert math.isclose(b_var_poisson_model(0.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(b_var_poisson_model(8.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert math.isclose(b_var_rnoise_model(0.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(b_var_rnoise_model(8.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert math.isclose(b_var_flat_model(0.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(b_var_flat_model(8.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert npts == 2
def test_handles_nan(inputs_constant):
    image, var_poisson, var_rnoise, var_rflat, x, j, bkglim, bkg_fit, bkg_order = inputs_constant
    image[:, 2] = np.nan

    (bkg_model, b_var_poisson_model, b_var_rnoise_model, b_var_flat_model, npts) = \
        extract1d._fit_background_model(image, var_poisson, var_rnoise, var_rflat,
                                        x, j, bkglim, bkg_fit, bkg_order)

    assert math.isclose(bkg_model(0.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(bkg_model(8.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert math.isclose(b_var_poisson_model(0.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(b_var_poisson_model(8.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert math.isclose(b_var_rnoise_model(0.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(b_var_rnoise_model(8.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert math.isclose(b_var_flat_model(0.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(b_var_flat_model(8.), 0.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert npts == 0
def test_fit_background_median(inputs_constant):
    image, var_poisson, var_rnoise, var_rflat, x, j, bkglim, bkg_fit, bkg_order = inputs_constant
    bkg_fit = "median"

    (bkg_model, b_var_poisson_model, b_var_rnoise_model, b_var_flat_model, npts) = \
        extract1d._fit_background_model(image, var_poisson, var_rnoise, var_rflat,
                                        x, j, bkglim, bkg_fit, bkg_order)

    assert math.isclose(bkg_model(0.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(bkg_model(8.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert math.isclose(b_var_poisson_model(0.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(b_var_poisson_model(8.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert math.isclose(b_var_rnoise_model(0.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(b_var_rnoise_model(8.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert math.isclose(b_var_flat_model(0.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)
    assert math.isclose(b_var_flat_model(8.), 22.0, rel_tol=1.e-8, abs_tol=1.e-8)

    assert npts == 2