Exemplo n.º 1
0
def test_ramp_fit_step(fits_input):
    """Make sure the RampFitStep runs without error."""
    fname = fits_input[0].header['filename'].replace('.fits',
                                                     '_rampfitstep.fits')
    RampFitStep.call(datamodels.open(fits_input),
                     output_file=fname,
                     save_results=True)
Exemplo n.º 2
0
    def test_ramp_fit_nirspec(self):
        """

        Regression test of ramp_fit step performed on NIRSpec data. This is a single
        integration dataset.

        """
        input_file = self.get_data(self.test_dir,
                                    'jw00023001001_01101_00001_NRS1_jump.fits')

        result, result_int = RampFitStep.call(input_file,
                          save_opt=True,
                          opt_name='rampfit_opt_out.fits', name='RampFit'
                          )
        output_file = result.meta.filename
        result.save(output_file)
        result.close()

        outputs = [(output_file,
                     'jw00023001001_01101_00001_NRS1_ramp_fit.fits'),
                    ('rampfit_opt_out_fitopt.fits',
                     'jw00023001001_01101_00001_NRS1_opt.fits',
                     ['primary','slope','sigslope','yint','sigyint',
                      'pedestal','weights','crmag'])
                  ]
        self.compare_outputs(outputs)
Exemplo n.º 3
0
    def test_ramp_fit_nirspec(self):
        """

        Regression test of ramp_fit step performed on NIRSpec data. This is a single
        integration dataset.

        """
        input_file = self.get_data(self.test_dir,
                                    'jw00023001001_01101_00001_NRS1_jump.fits')

        result, result_int = RampFitStep.call(input_file,
                          save_opt=True,
                          opt_name='rampfit_opt_out.fits', name='RampFit'
                          )
        output_file = result.meta.filename
        result.save(output_file)
        result.close()

        outputs = [(output_file,
                     'jw00023001001_01101_00001_NRS1_ramp_fit.fits'),
                    ('rampfit_opt_out_fitopt.fits',
                     'jw00023001001_01101_00001_NRS1_opt.fits',
                     ['primary','slope','sigslope','yint','sigyint',
                      'pedestal','weights','crmag'])
                  ]
        self.compare_outputs(outputs)
Exemplo n.º 4
0
def test_fake_pedestals(darkcases, rates, pedestals):
    '''Test ramp-fit step with fake data.'''

    # open ramp to get data shape and headers
    m = RampModel(darkcases)
    tgroup = m.meta.exposure.group_time
    rates = np.float(rates)
    pedestals = np.float(pedestals)

    nrows = int(m.meta.subarray.xsize)
    ncols = int(m.meta.subarray.ysize)
    ngroups = int(m.meta.exposure.ngroups)
    nints = int(m.meta.exposure.nints)

    # create fake ramps with known slope and pedestal
    new_data = np.zeros((nints, ngroups, nrows, ncols), dtype=np.float32)
    for i in np.arange(0, ngroups):
        for j in np.arange(4, 2044):
            for k in np.arange(4, 2044):
                new_data[0, i, j, k] = pedestals + rates * ((i + 1) * tgroup)

    # save it
    m.data = new_data
    m.err = np.zeros((nints, ngroups, nrows, ncols), dtype=np.float32)
    fake_data_outname = darkcases[:-5] + "_rate" + str(
        rates) + "_pedestal" + str(
            pedestals) + "_test_fake_pedestals_uncal.fits"
    m.save(fake_data_outname, overwrite=True)

    output, outint = RampFitStep.call(
        m,
        output_file=fake_data_outname[:-5] + "_rate.fits",
        save_opt=True,
        opt_name=fake_data_outname[:-5] + "_rate_opt.fits")
    optoutput = fits.open(fake_data_outname[:-5] + "rate_opt.fits")

    # check pedestal
    clip = sigma_clip(optoutput['PEDESTAL'].data)
    clip.data[clip.mask] = np.nan
    meanped = np.nanmean(clip.data)
    assert np.allclose(pedestals, meanped, rtol=2, atol=2) == True

    optoutput.close()
Exemplo n.º 5
0
    def test_ramp_fit_miri1(self):
        """
        Regression test of ramp_fit step performed on MIRI data.
        """
        input_file = self.get_data(self.test_dir, 'jw00001001001_01101_00001_MIRIMAGE_jump.fits')

        result = RampFitStep.call(input_file,
                         save_opt=True,
                         opt_name='rampfit1_opt_out.fits')
        output_file = result[0].save(path=result[0].meta.filename.replace('jump','rampfit'))
        int_output = result[1].save(path=result[1].meta.filename.replace('jump','rampfit_int'))
        result[0].close()
        result[1].close()

        outputs = [(output_file,
                    'jw00001001001_01101_00001_MIRIMAGE_ramp_fit.fits'),
                   (int_output,
                    'jw00001001001_01101_00001_MIRIMAGE_int.fits'),
                   ('rampfit1_opt_out_fitopt.fits',
                    'jw00001001001_01101_00001_MIRIMAGE_opt.fits')
                  ]
        self.compare_outputs(outputs)
Exemplo n.º 6
0
def test_extensions(darkcases):
    '''Test ramp-fit step with fake data.'''

    # open ramp to get data shape and headers
    m = RampModel(darkcases)

    fake_data_outname = darkcases[:-5] + "_test_extensions_uncal.fits"
    output, outint = RampFitStep.call(m,
                                      save_opt=True,
                                      opt_name=fake_data_outname[:-5] +
                                      "_rate_opt.fits")

    with fits.open(fake_data_outname[:-5] + "_rate_opt.fits") as h:

        # check all optional outputs are there
        assert h[1] == h['SLOPE']
        assert h[2] == h['SIGSLOPE']
        assert h[3] == h['YINT']
        assert h[4] == h['SIGYINT']
        assert h[5] == h['PEDESTAL']
        assert h[6] == h['WEIGHTS']
        assert h[7] == h['CRMAG']
Exemplo n.º 7
0
    def test_ramp_fit_niriss(self):
        """
        Regression test of ramp_fit step performed on NIRISS data.
        """
        input_file = self.get_data(
            self.test_dir, 'jw00034001001_01101_00001_NIRISS_jump.fits')

        result, result_int = RampFitStep.call(input_file,
                                              save_opt=True,
                                              opt_name='rampfit_opt_out.fits')
        output_file = result.meta.filename
        result.save(output_file)
        result.close()

        outputs = [(output_file,
                    'jw00034001001_01101_00001_NIRISS_ramp_fit.fits'),
                   ('rampfit_opt_out_fitopt.fits',
                    'jw00034001001_01101_00001_NIRISS_uncal_opt.fits', [
                        'primary', 'slope', 'sigslope', 'yint', 'sigyint',
                        'pedestal', 'weights', 'crmag'
                    ])]
        self.compare_outputs(outputs)
Exemplo n.º 8
0
    def test_ramp_fit_miri1(self):
        """
        Regression test of ramp_fit step performed on MIRI data.
        """
        input_file = self.get_data(self.test_dir, 'jw00001001001_01101_00001_MIRIMAGE_jump.fits')

        result = RampFitStep.call(input_file,
                         save_opt=True,
                         opt_name='rampfit1_opt_out.fits')
        output_file = result[0].save(path=result[0].meta.filename.replace('jump','rampfit'))
        int_output = result[1].save(path=result[1].meta.filename.replace('jump','rampfit_int'))
        result[0].close()
        result[1].close()

        outputs = [(output_file,
                    'jw00001001001_01101_00001_MIRIMAGE_ramp_fit.fits'),
                   (int_output,
                    'jw00001001001_01101_00001_MIRIMAGE_int.fits'),
                   ('rampfit1_opt_out_fitopt.fits',
                    'jw00001001001_01101_00001_MIRIMAGE_opt.fits')
                  ]
        self.compare_outputs(outputs)
Exemplo n.º 9
0
    def test_ramp_fit_niriss(self):
        """
        Regression test of ramp_fit step performed on NIRISS data.
        """
        input_file = self.get_data(self.test_dir,
                                   'jw00034001001_01101_00001_NIRISS_jump.fits')

        result, result_int = RampFitStep.call(input_file,
                          save_opt=True,
                          opt_name='rampfit_opt_out.fits'
        )
        output_file = result.meta.filename
        result.save(output_file)
        result.close()

        outputs = [(output_file,
                    'jw00034001001_01101_00001_NIRISS_ramp_fit.fits'),
                    ('rampfit_opt_out_fitopt.fits',
                     'jw00034001001_01101_00001_NIRISS_uncal_opt.fits',
                     ['primary','slope','sigslope','yint','sigyint',
                      'pedestal','weights','crmag'])
                  ]
        self.compare_outputs(outputs)
Exemplo n.º 10
0
def test_dq(darkcases):
    '''Test ramp-fit step with fake data.'''

    # open ramp to get data shape and headers
    m = RampModel(darkcases)

    # create one saturated pixel
    m.data[0, :, 250, 250] = m.data[0, :, 250, 250] + 57000
    m.pixeldq[250, 250] = 2.0

    # add in jump to one of the pixels
    m.data[0, 2:, 500, 500] = m.data[0, 2:, 500, 500] + 5000
    m.groupdq[0, 2, 500, 500] = 4.0

    output, outint = RampFitStep.call(m)

    # check DQ array
    before_satdq = m.pixeldq[250, 250]
    after_satdq = output.dq[250, 250]
    before_CRdq = m.groupdq[0, 2, 500, 500]
    after_CRdq = output.dq[500, 500]

    assert before_satdq == after_satdq
    assert before_CRdq == after_CRdq
Exemplo n.º 11
0
def test_CR_handling(darkcases, rates, pedestals):
    '''Test ramp-fit step with fake data.'''

    # open ramp to get data shape and headers
    m = RampModel(darkcases)
    tgroup = m.meta.exposure.group_time
    rates = np.float(rates)
    pedestals = np.float(pedestals)

    ngroups = 10
    nints = 1
    nrows = int(m.meta.subarray.xsize)
    ncols = int(m.meta.subarray.ysize)
    m.meta.exposure.ngroups = ngroups
    m.meta.exposure.ngroup = ngroups
    m.meta.exposure.nints = nints
    m.err = np.zeros((nints, ngroups, nrows, ncols), dtype=np.float32)
    m.groupdq = np.zeros((nints, ngroups, nrows, ncols), dtype=np.float32)

    # create fake ramps with known slope and pedestal
    new_data = np.zeros((nints, ngroups, nrows, ncols), dtype=np.float32)
    for ints in np.arange(0, nints):
        for i in np.arange(0, ngroups):
            for j in np.arange(4, 2044):
                for k in np.arange(4, 2044):
                    new_data[ints, i, j,
                             k] = pedestals + rates * ((i + 1) * tgroup)

    # add in jump to one of the pixels
    new_data[0, 2:, 500, 500] = new_data[0, 2:, 500, 500] + (rates * 5)
    m.groupdq[0, 2, 500, 500] = 4.0

    # add in two jumps to one of the pixels
    new_data[0, 2:, 740, 740] = new_data[0, 2:, 740, 740] + (rates * 5)
    new_data[0, 6:, 740, 740] = new_data[0, 6:, 740, 740] + (rates * 6)
    m.groupdq[0, 2, 740, 740] = 4.0
    m.groupdq[0, 6, 740, 740] = 4.0

    # save it
    m.data = new_data
    fake_data_outname = darkcases[:-5] + "_rate" + str(
        rates) + "_pedestal" + str(pedestals) + "_test2_uncal.fits"
    # m.save(fake_data_outname,overwrite=True)

    output, outint = RampFitStep.call(
        m,
        output_file=fake_data_outname[:-5] + "rate.fits",
        save_opt=True,
        opt_name=fake_data_outname[:-5] + "rate_opt.fits")
    optoutput = fits.open(fake_data_outname[:-5] + "rate_opt.fits")

    # check output rates in regular output
    clip = sigma_clip(output.data)
    clip.data[clip.mask] = np.nan
    clip.data[output.dq != 0] = np.nan
    meanrate = np.nanmean(clip.data)
    assert np.allclose(meanrate, rates, rtol=8, atol=8) == True

    # check output rates in INTS output
    if nints > 1:
        for i in np.arange(0, nints):
            clip = sigma_clip(outint.data[nints, :, :])
            clip.data[clip.mask] = np.nan
            clip.data[output.dq != 0] = np.nan
            meanrate = np.nanmean(clip.data)
            assert np.allclose(meanrate, rates, rtol=8, atol=8) == True

    # CR rates from rate_opt.fits file
    ratebeforeCR1 = optoutput['SLOPE'].data[0, 0, 740, 740]
    rateafterCR1 = optoutput['SLOPE'].data[0, 1, 740, 740]
    ratebeforeCR2 = optoutput['SLOPE'].data[0, 1, 740, 740]
    rateafterCR2 = optoutput['SLOPE'].data[0, 2, 740, 740]
    assert np.allclose(ratebeforeCR1, rateafterCR1, rtol=1e-2,
                       atol=1e-2) == True
    assert np.allclose(ratebeforeCR2, rateafterCR2, rtol=1e-2,
                       atol=1e-2) == True

    # # check to make sure slope is weighted average of intervals
    # weights = optoutput['WEIGHTS'].data
    # interval1 = optoutput['SLOPE'].data[0,0,740,740]*weights[0,0,740,740]
    # interval2 = optoutput['SLOPE'].data[0,1,740,740]*weights[0,1,740,740]
    # interval3 = optoutput['SLOPE'].data[0,2,740,740]*weights[0,2,740,740]
    # calc = (interval1 + interval2 + interval3)/(weights[0,0,740,740] + weights[0,1,740,740] +weights[0,2,740,740])
    # print(calc)

    # other integrations shouldn't have CR hit
    if nints > 1:
        int2_noCRbefore = optoutput['SLOPE'].data[1, 0, 740, 740]
        int2_noCRafter1 = optoutput['SLOPE'].data[1, 1, 740, 740]
        int2_noCRafter2 = optoutput['SLOPE'].data[1, 2, 740, 740]
        assert int2_noCRbefore == rates
        assert int2_noCRafter1 == 0.0
        assert int2_noCRafter2 == 0.0

    # CR rates for pix with no CR hit
    ratebefore = optoutput['SLOPE'].data[0, 0, 800, 800]
    rateafter = optoutput['SLOPE'].data[0, 1, 800, 800]
    assert ratebefore == output.data[800, 800]
    assert rateafter == 0.0

    # Check CR magnitude
    # right now this is just calculated as the difference
    # between the two group values for the pixel. Is that right?
    manualCRmag = new_data[0, 2, 500, 500] - new_data[0, 1, 500, 500]
    pipeCRmag = optoutput['CRMAG'].data[0, 0, 500, 500]
    assert np.allclose(manualCRmag, pipeCRmag, rtol=1, atol=1) == True

    manualCRmag = new_data[0, 2, 740, 740] - new_data[0, 1, 740, 740]
    pipeCRmag = optoutput['CRMAG'].data[0, 0, 740, 740]
    assert np.allclose(manualCRmag, pipeCRmag, rtol=1, atol=1) == True

    manualCRmag = new_data[0, 6, 740, 740] - new_data[0, 5, 740, 740]
    pipeCRmag = optoutput['CRMAG'].data[0, 1, 740, 740]
    assert np.allclose(manualCRmag, pipeCRmag, rtol=1, atol=1) == True

    optoutput.close()
Exemplo n.º 12
0
def test_ramp_fit_step(fits_input):
    """Make sure the RampFitStep runs without error."""

    RampFitStep.call(datamodels.open(fits_input), save_results=True)