Exemplo n.º 1
0
 def test_case_4(self):
     # connected fsa
     s = r'''
     0 4 40 0
     0 2 20 0
     1 6 -1 0
     2 3 30 0
     3 6 -1 0
     3 1 10 0
     4 5 50 0
     5 2 8 0
     6
     '''
     fsa = k2host.str_to_fsa(s)
     sorter = k2host.TopSorter(fsa)
     array_size = k2host.IntArray2Size()
     sorter.get_sizes(array_size)
     fsa_out = k2host.Fsa.create_fsa_with_size(array_size)
     arc_map = k2host.IntArray1.create_array_with_size(array_size.size2)
     status = sorter.get_output(fsa_out, arc_map)
     self.assertTrue(status)
     expected_arc_indexes = torch.IntTensor([0, 2, 3, 4, 5, 7, 8, 8])
     expected_arcs = torch.IntTensor([[0, 1, 40, 0], [0, 3, 20, 0],
                                      [1, 2, 50, 0], [2, 3, 8, 0],
                                      [3, 4, 30, 0], [4, 6, -1, 0],
                                      [4, 5, 10, 0], [5, 6, -1, 0]])
     expected_arc_map = torch.IntTensor([0, 1, 6, 7, 3, 4, 5, 2])
     self.assertTrue(torch.equal(fsa_out.indexes, expected_arc_indexes))
     self.assertTrue(torch.equal(fsa_out.data, expected_arcs))
     self.assertTrue(torch.equal(arc_map.data, expected_arc_map))
Exemplo n.º 2
0
    def test_case_1(self):
        # empty fsa
        array_size = k2host.IntArray2Size(0, 0)
        fsa = k2host.Fsa.create_fsa_with_size(array_size)
        sorter = k2host.TopSorter(fsa)
        array_size = k2host.IntArray2Size()
        sorter.get_sizes(array_size)
        fsa_out = k2host.Fsa.create_fsa_with_size(array_size)
        arc_map = k2host.IntArray1.create_array_with_size(array_size.size2)
        status = sorter.get_output(fsa_out, arc_map)
        self.assertTrue(status)
        self.assertTrue(k2host.is_empty(fsa_out))
        self.assertTrue(arc_map.empty())

        # test without arc_map
        sorter.get_output(fsa_out)
        self.assertTrue(k2host.is_empty(fsa_out))
Exemplo n.º 3
0
 def test_case_3(self):
     # non-connected fsa (not accessible)
     s = r'''
     0 2 -1 0
     1 0 1 0
     1 2 0 0
     2
     '''
     fsa = k2host.str_to_fsa(s)
     sorter = k2host.TopSorter(fsa)
     array_size = k2host.IntArray2Size()
     sorter.get_sizes(array_size)
     fsa_out = k2host.Fsa.create_fsa_with_size(array_size)
     state_map = k2host.IntArray1.create_array_with_size(array_size.size1)
     status = sorter.get_output(fsa_out, state_map)
     self.assertFalse(status)
     self.assertTrue(k2host.is_empty(fsa_out))
     self.assertTrue(state_map.empty())
Exemplo n.º 4
0
 def test_case_3(self):
     # non-connected fsa (not accessible)
     s = r'''
     0 2 -1 0
     1 0 1 0
     1 2 0 0
     2
     '''
     fsa = k2host.str_to_fsa(s)
     sorter = k2host.TopSorter(fsa)
     array_size = k2host.IntArray2Size()
     sorter.get_sizes(array_size)
     fsa_out = k2host.Fsa.create_fsa_with_size(array_size)
     arc_map = k2host.IntArray1.create_array_with_size(array_size.size2)
     status = sorter.get_output(fsa_out, arc_map)
     self.assertTrue(status)
     self.assertFalse(k2host.is_empty(fsa_out))
     expected_arc_map = torch.IntTensor([0])
     self.assertTrue(torch.equal(arc_map.data, expected_arc_map))