Exemplo n.º 1
0
 def test_voxelgrids_dim(self, device, dtype):
     # The dimension of voxelgrids should be 4 (batched).
     with pytest.raises(ValueError,
                        match="Expected voxelgrids to have 4 dimensions "
                        "but got 3 dimensions."):
         voxelgrids = torch.ones([6, 6, 6], device=device, dtype=dtype)
         vg.downsample(voxelgrids, [2, 2, 2])
Exemplo n.º 2
0
 def test_scale_val_2(self, device, dtype):
     # Every element in the scale should be greater or equal to one.
     with pytest.raises(ValueError,
                        match="Downsample ratio must be at least 1 "
                        "along every dimension but got -1 at "
                        "index 0."):
         voxelgrids = torch.ones([2, 6, 6, 6], device=device, dtype=dtype)
         vg.downsample(voxelgrids, [-1, 3, 2])
Exemplo n.º 3
0
 def test_scale_val_1(self, device, dtype):
     # The scale should be smaller or equal to the size of the input.
     with pytest.raises(
             ValueError,
             match="Downsample ratio must be less than voxelgrids "
             "shape of 6 at index 2, but got 7."):
         voxelgrids = torch.ones([2, 6, 6, 6], device=device, dtype=dtype)
         vg.downsample(voxelgrids, [1, 2, 7])
Exemplo n.º 4
0
    def test_scale_dim(self, device, dtype):
        # The dimension of scale should be 3 if it is a list.
        with pytest.raises(ValueError,
                           match="Expected scale to have 3 dimensions "
                           "but got 2 dimensions."):
            voxelgrids = torch.ones([2, 6, 6, 6], device=device, dtype=dtype)
            vg.downsample(voxelgrids, [2, 2])

        with pytest.raises(TypeError,
                           match="Expected scale to be type list or int "
                           "but got <class 'str'>."):
            voxelgrids = torch.ones([2, 6, 6, 6], device=device, dtype=dtype)
            vg.downsample(voxelgrids, "2")
Exemplo n.º 5
0
    def test_bool_input(self, device, dtype):
        if dtype != torch.bool:
            pytest.skip("This test is only for torch.bool.")

        voxelgrids = torch.ones((2, 4, 4, 4), device=device, dtype=dtype)
        voxelgrids[:, :, 1, :] = 0
        voxelgrids[:, :, 3, :] = 0

        output = vg.downsample(voxelgrids, 2)

        expected_dtype = torch.half if device == "cuda" else torch.float
        expected = torch.ones(
            (2, 2, 2, 2), device=device, dtype=expected_dtype) * 0.5
        assert torch.equal(output, expected)
Exemplo n.º 6
0
    def test_output_batch(self, device, dtype):
        if dtype == torch.bool:
            pytest.skip("This test won't work for torch.bool.")

        # The size of the batched input shoud be correct.
        # For example, if the input size is [2, 6, 6, 6],
        # Scale is [3, 3, 3], the output size should be [2, 2, 2, 2]
        # Also, test the function is numerically correct
        voxelgrid1 = torch.ones([4, 4, 4], device=device, dtype=dtype)
        voxelgrid2 = torch.ones((4, 4, 4), device=device, dtype=dtype)
        voxelgrid2[1, :2] = 0.8
        voxelgrid2[1, 2:] = 0.4
        voxelgrid2[3] = 0
        batched_voxelgrids = torch.stack((voxelgrid1, voxelgrid2))
        output = vg.downsample(batched_voxelgrids, [2, 2, 2])

        expected1 = torch.ones((2, 2, 2), device=device, dtype=dtype)
        expected2 = torch.tensor(
            [[[0.9, 0.9], [0.7, 0.7]], [[0.5000, 0.5000], [0.5000, 0.5000]]],
            device=device,
            dtype=dtype)
        expected = torch.stack((expected1, expected2))
        assert torch.allclose(output, expected)
Exemplo n.º 7
0
 def test_output_size(self, device, dtype):
     # The size of the output should be input.shape / scale
     voxelgrids = torch.ones([3, 6, 6, 6], device=device, dtype=dtype)
     output = vg.downsample(voxelgrids, [1, 2, 3])
     assert (output.shape == torch.Size([3, 6, 3, 2]))