Exemplo n.º 1
0
def test_edmot():
    """
    Test the EdMot procedure.
    """
    graph = nx.newman_watts_strogatz_graph(50, 5, 0.3)

    model = EdMot()

    model.fit(graph)
    memberships = model.get_memberships()

    indices = [k for k, v in memberships.items()].sort()
    nodes = [node for node in graph.nodes()].sort()

    assert graph.number_of_nodes() == len(memberships)
    assert indices == nodes
    assert type(memberships) == dict

    graph = nx.newman_watts_strogatz_graph(150, 5, 0.3)

    model = EdMot()

    model.fit(graph)
    memberships = model.get_memberships()

    indices = [k for k, v in memberships.items()].sort()
    nodes = [node for node in graph.nodes()].sort()

    assert graph.number_of_nodes() == len(memberships)
    assert indices == nodes
    assert type(memberships) == dict
Exemplo n.º 2
0
def edmot(population, neighbors, probability):
    g = nx.newman_watts_strogatz_graph(population, neighbors, probability)
    model = EdMot(3, 0.5)
    model.fit(g)
    #print(model.get_memberships())
    return [model.get_memberships()]
Exemplo n.º 3
0
g = nx.newman_watts_strogatz_graph(100, 10, 0.2)

X = {i: random.sample(range(150), 50) for i in range(100)}

row = np.array([k for k, v in X.items() for val in v])
col = np.array([val for k, v in X.items() for val in v])
data = np.ones(100 * 50)
shape = (100, 150)

X = coo_matrix((data, (row, col)), shape=shape)

model = MUSAE()

model.fit(g, X)

model.get_memberships()

#------------------------------------
# SINE example
#------------------------------------

g = nx.newman_watts_strogatz_graph(100, 10, 0.2)

X = {i: random.sample(range(150), 50) for i in range(100)}

row = np.array([k for k, v in X.items() for val in v])
col = np.array([val for k, v in X.items() for val in v])
data = np.ones(100 * 50)
shape = (100, 150)

X = coo_matrix((data, (row, col)), shape=shape)