def yolo_head(graph, feats, anchors, num_classes):
    with graph.as_default():
        num_anchors = len(anchors)
        anchors_tensor = K.reshape(K.variable(anchors),
                                   [1, 1, 1, num_anchors, 2])

        conv_dims = K.shape(feats)[1:3]
        conv_height_index = K.arange(0, stop=conv_dims[0])
        conv_width_index = K.arange(0, stop=conv_dims[1])
        conv_height_index = K.tile(conv_height_index, [conv_dims[1]])

        conv_width_index = K.tile(K.expand_dims(conv_width_index, 0),
                                  [conv_dims[0], 1])
        conv_width_index = K.flatten(K.transpose(conv_width_index))
        conv_index = K.transpose(K.stack([conv_height_index,
                                          conv_width_index]))
        conv_index = K.reshape(conv_index,
                               [1, conv_dims[0], conv_dims[1], 1, 2])
        conv_index = K.cast(conv_index, K.dtype(feats))

        feats = K.reshape(
            feats,
            [-1, conv_dims[0], conv_dims[1], num_anchors, num_classes + 5])
        conv_dims = K.cast(K.reshape(conv_dims, [1, 1, 1, 1, 2]),
                           K.dtype(feats))

        box_xy = K.sigmoid(feats[..., :2])
        box_wh = K.exp(feats[..., 2:4])
        box_confidence = K.sigmoid(feats[..., 4:5])
        box_class_probs = K.softmax(feats[..., 5:])

        box_xy = (box_xy + conv_index) / conv_dims
        box_wh = box_wh * anchors_tensor / conv_dims

        return box_xy, box_wh, box_confidence, box_class_probs
Exemplo n.º 2
0
    def test_gradient(self):
        val = np.random.random((4, 2))
        xth = KTH.variable(val)
        xtf = KTF.variable(val)

        expth = xth * KTH.exp(xth)
        exptf = xtf * KTF.exp(xtf)
        lossth = KTH.sum(expth)
        losstf = KTF.sum(exptf)
        zero_lossth = KTH.stop_gradient(lossth)
        zero_losstf = KTF.stop_gradient(losstf)

        gradth = KTH.gradients(lossth, [expth])
        gradtf = KTF.gradients(losstf, [exptf])
        zero_gradth = KTH.gradients(lossth + zero_lossth, [expth])
        zero_gradtf = KTF.gradients(losstf + zero_losstf, [exptf])

        zth = KTH.eval(gradth[0])
        ztf = KTF.eval(gradtf[0])
        zero_zth = KTH.eval(zero_gradth[0])
        zero_ztf = KTF.eval(zero_gradtf[0])
        assert zth.shape == ztf.shape
        assert zero_zth.shape == zero_ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)
        assert_allclose(zero_zth, zero_ztf, atol=1e-05)
        assert_allclose(zero_zth, zth, atol=1e-05)
        assert_allclose(zero_ztf, ztf, atol=1e-05)
Exemplo n.º 3
0
    def test_gradient(self):
        val = np.random.random((4, 2))
        xth = KTH.variable(val)
        xtf = KTF.variable(val)

        expth = xth * KTH.exp(xth)
        exptf = xtf * KTF.exp(xtf)
        lossth = KTH.sum(expth)
        losstf = KTF.sum(exptf)
        zero_lossth = KTH.stop_gradient(lossth)
        zero_losstf = KTF.stop_gradient(losstf)

        gradth = KTH.gradients(lossth, [expth])
        gradtf = KTF.gradients(losstf, [exptf])
        zero_gradth = KTH.gradients(lossth + zero_lossth, [expth])
        zero_gradtf = KTF.gradients(losstf + zero_losstf, [exptf])

        zth = KTH.eval(gradth[0])
        ztf = KTF.eval(gradtf[0])
        zero_zth = KTH.eval(zero_gradth[0])
        zero_ztf = KTF.eval(zero_gradtf[0])
        assert zth.shape == ztf.shape
        assert zero_zth.shape == zero_ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)
        assert_allclose(zero_zth, zero_ztf, atol=1e-05)
        assert_allclose(zero_zth, zth, atol=1e-05)
        assert_allclose(zero_ztf, ztf, atol=1e-05)
Exemplo n.º 4
0
    def call(self, x, mask=None):
        uit = dot_product(x, self.W)

        if self.bias:
            uit += self.b

        uit = K.tanh(uit)
        #ait = K.dot(uit, self.u)
        ait = dot_product(uit, self.u)
        a = K.exp(ait)

        # apply mask after the exp. will be re-normalized next
        if mask is not None:
            # Cast the mask to floatX to avoid float64 upcasting in theano
            a *= K.cast(mask, K.floatx())

        # in some cases especially in the early stages of training the sum may be almost zero
        # and this results in NaN's. A workaround is to add a very small positive number \epsilon to the sum.
        # a /= K.cast(K.sum(a, axis=1, keepdims=True), K.floatx())
        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())

        a = K.expand_dims(a)
        weighted_input = x * a
        #return K.sum(weighted_input, axis=1)
        print "here", weighted_input.shape
        return weighted_input
Exemplo n.º 5
0
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
    """Convert final layer features to bounding box parameters."""
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3]  # height, width
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
                    [1, grid_shape[1], 1, 1])
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
                    [grid_shape[0], 1, 1, 1])
    grid = K.concatenate([grid_x, grid_y])
    grid = K.cast(grid, K.dtype(feats))

    feats = K.reshape(
        feats,
        [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

    # Adjust preditions to each spatial grid point and anchor size.
    box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(
        grid_shape[::-1], K.dtype(feats))
    box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(
        input_shape[::-1], K.dtype(feats))
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.sigmoid(feats[..., 5:])

    if calc_loss == True:
        return grid, feats, box_xy, box_wh
    return box_xy, box_wh, box_confidence, box_class_probs
Exemplo n.º 6
0
    def customLoss(yTrue, yPred):

             weights = [assign_w, 1, 1, 1, 1, 1, 1, 1]
             target = yTrue

             # output = yPred
             yPred /= tf.reduce_sum(yPred,
                                reduction_indices=len(yPred.get_shape()) - 1,
                                keep_dims=True)
                # manual computation of crossentropy
             epsilon = K._to_tensor(tf.keras.backend.epsilon(), yPred.dtype.base_dtype)
             yPred = tf.clip_by_value(yPred, epsilon, 1. - epsilon)
             # yPred = tf.log(yPred)
             relu4 = keras.activations.relu(yPred, alpha=0.0, max_value=None, threshold=-4.1)
             yPred = 1 / (1 + K.exp(-1 * gamma * (relu4)))
             ######apply weights here###############
             mask = K.cast(K.expand_dims(weights, axis=-1), dtype='float32')
             tensor_shape = yPred.get_shape()
             # x = tf.add(x, tf.constant(1, shape=x.shape))
             yPred_stack = []
             for i in range(tensor_shape[1]):
                 mask_i = K.cast(K.expand_dims(mask[i], axis=-1), dtype='float32')
                 yPred_i = K.cast(K.expand_dims(yPred[:, i], axis=-1), dtype='float32')
                 yPred_stack.append(K.dot(yPred_i, mask_i))

             output = tf.reshape(tf.stack(yPred_stack, axis=1, name='stack'), [-1, tensor_shape[1]])

             return - tf.reduce_sum(target * output,
                                       reduction_indices=len(output.get_shape()) - 1)
    def call(self, inputs, mask=None, **kwargs):
        input_len = K.shape(inputs)[1]

        if self.attention_type == Attention.ATTENTION_TYPE_ADD:
            e = self._call_additive_emission(inputs)
        elif self.attention_type == Attention.ATTENTION_TYPE_MUL:
            e = self._call_multiplicative_emission(inputs)

        if self.attention_activation is not None:
            e = self.attention_activation(e)
        if self.attention_width is not None:
            if self.history_only:
                lower = K.arange(0, input_len) - (self.attention_width - 1)
            else:
                lower = K.arange(0, input_len) - self.attention_width // 2
            lower = K.expand_dims(lower, axis=-1)
            upper = lower + self.attention_width
            indices = K.expand_dims(K.arange(0, input_len), axis=0)
            e -= 10000.0 * (1.0 - K.cast(lower <= indices, K.floatx()) *
                            K.cast(indices < upper, K.floatx()))
        if mask is not None:
            mask = K.expand_dims(K.cast(mask, K.floatx()), axis=-1)
            e -= 10000.0 * ((1.0 - mask) *
                            (1.0 - K.permute_dimensions(mask, (0, 2, 1))))

        # a_{t} = \text{softmax}(e_t)
        e = K.exp(e - K.max(e, axis=-1, keepdims=True))
        a = e / K.sum(e, axis=-1, keepdims=True)

        # l_t = \sum_{t'} a_{t, t'} x_{t'}
        v = K.batch_dot(a, inputs)
        if self.attention_regularizer_weight > 0.0:
            self.add_loss(self._attention_regularizer(a))

        if self.return_attention:
            return [v, a]
        return v
Exemplo n.º 8
0
def depth_softmax(matrix):
    sigmoid = lambda x: 1 / (1 + K.exp(-x))
    sigmoided_matrix = sigmoid(matrix)
    softmax_matrix = sigmoided_matrix / K.sum(sigmoided_matrix, axis=-1, keepdims=True)
    return softmax_matrix
Exemplo n.º 9
0
def log_sum_exp(x, axis=None):
    """Log-sum-exp trick implementation"""
    x_max = ktf.max(x, axis=axis, keepdims=True)
    return ktf.log(ktf.sum(ktf.exp(x - x_max), axis=axis, keepdims=True))+x_max
Exemplo n.º 10
0
 def kernel(x):
     return tf.exp(-0.5 * (x - mu) * (x - mu) / sigma / sigma)
Exemplo n.º 11
0
def customLoss(yTrue, yPred):
    relu4 = keras.activations.relu(yPred, alpha=0.0, max_value=None, threshold=-4.1)
    sigmoid5 = 1 / (1 + K.exp(-1 * GAMMA * (relu4)))

    return -(yTrue * sigmoid5 + (1 - yTrue) * (1 - sigmoid5))