Exemplo n.º 1
0
    def test_gather(self):
        shape = (10, 2, 3)
        ref = np.arange(np.prod(shape)).reshape(shape)
        ref_th = KTH.variable(ref)
        ref_tf = KTF.variable(ref)

        inds = [1, 3, 7, 9]
        inds_th = KTH.variable(inds, dtype='int32')
        inds_tf = KTF.variable(inds, dtype='int32')
        th_z = KTH.gather(ref_th, inds_th)
        th_result = KTH.eval(th_z)
        tf_result = KTF.eval(KTF.gather(ref_tf, inds_tf))

        assert_allclose(tf_result, th_result, atol=1e-05)

        if hasattr(th_z, '_keras_shape'):
            assert th_z._keras_shape == th_result.shape

        # test theano shape inference when
        # input shape has None entries
        if K.backend() == 'theano':
            x = K.placeholder(shape=(None, 3, 4))
            indices = K.placeholder(shape=(5, 6), dtype='int32')
            y = K.gather(x, indices)
            assert y._keras_shape == (5, 6, 3, 4)
Exemplo n.º 2
0
    def test_value_manipulation(self):
        val = np.random.random((4, 2))
        xth = KTH.variable(val)
        xtf = KTF.variable(val)

        # get_value
        valth = KTH.get_value(xth)
        valtf = KTF.get_value(xtf)
        assert valtf.shape == valth.shape
        assert_allclose(valth, valtf, atol=1e-05)

        # set_value
        val = np.random.random((4, 2))
        KTH.set_value(xth, val)
        KTF.set_value(xtf, val)

        valth = KTH.get_value(xth)
        valtf = KTF.get_value(xtf)
        assert valtf.shape == valth.shape
        assert_allclose(valth, valtf, atol=1e-05)

        # count_params
        assert KTH.count_params(xth) == KTF.count_params(xtf)

        # print_tensor
        check_single_tensor_operation('print_tensor', ())
        check_single_tensor_operation('print_tensor', (2,))
        check_single_tensor_operation('print_tensor', (4, 3))
        check_single_tensor_operation('print_tensor', (1, 2, 3))

        val = np.random.random((3, 2))
        xth = KTH.variable(val)
        xtf = KTF.variable(val)
        assert KTH.get_variable_shape(xth) == KTF.get_variable_shape(xtf)
Exemplo n.º 3
0
    def test_value_manipulation(self):
        val = np.random.random((4, 2))
        xth = KTH.variable(val)
        xtf = KTF.variable(val)

        # get_value
        valth = KTH.get_value(xth)
        valtf = KTF.get_value(xtf)
        assert valtf.shape == valth.shape
        assert_allclose(valth, valtf, atol=1e-05)

        # set_value
        val = np.random.random((4, 2))
        KTH.set_value(xth, val)
        KTF.set_value(xtf, val)

        valth = KTH.get_value(xth)
        valtf = KTF.get_value(xtf)
        assert valtf.shape == valth.shape
        assert_allclose(valth, valtf, atol=1e-05)

        # count_params
        assert KTH.count_params(xth) == KTF.count_params(xtf)

        # print_tensor
        check_single_tensor_operation('print_tensor', ())
        check_single_tensor_operation('print_tensor', (2, ))
        check_single_tensor_operation('print_tensor', (4, 3))
        check_single_tensor_operation('print_tensor', (1, 2, 3))

        val = np.random.random((3, 2))
        xth = KTH.variable(val)
        xtf = KTF.variable(val)
        assert KTH.get_variable_shape(xth) == KTF.get_variable_shape(xtf)
Exemplo n.º 4
0
    def test_shape_operations(self):
        # concatenate
        xval = np.random.random((4, 3))
        xth = KTH.variable(xval)
        xtf = KTF.variable(xval)
        yval = np.random.random((4, 2))
        yth = KTH.variable(yval)
        ytf = KTF.variable(yval)
        zth = KTH.eval(KTH.concatenate([xth, yth], axis=-1))
        ztf = KTF.eval(KTF.concatenate([xtf, ytf], axis=-1))
        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)

        check_single_tensor_operation('reshape', (4, 2), shape=(8, 1))
        check_single_tensor_operation('permute_dimensions', (4, 2, 3),
                                      pattern=(2, 0, 1))
        check_single_tensor_operation('repeat', (4, 1), n=3)
        check_single_tensor_operation('flatten', (4, 1))
        check_single_tensor_operation('expand_dims', (4, 3), dim=-1)
        check_single_tensor_operation('expand_dims', (4, 3, 2), dim=1)
        check_single_tensor_operation('squeeze', (4, 3, 1), axis=2)
        check_single_tensor_operation('squeeze', (4, 1, 1), axis=1)
        check_composed_tensor_operations('reshape', {'shape': (4, 3, 1, 1)},
                                         'squeeze', {'axis': 2},
                                         (4, 3, 1, 1))
Exemplo n.º 5
0
    def test_gather(self):
        shape = (10, 2, 3)
        ref = np.arange(np.prod(shape)).reshape(shape)
        ref_th = KTH.variable(ref)
        ref_tf = KTF.variable(ref)

        inds = [1, 3, 7, 9]
        inds_th = KTH.variable(inds, dtype='int32')
        inds_tf = KTF.variable(inds, dtype='int32')
        th_z = KTH.gather(ref_th, inds_th)
        th_result = KTH.eval(th_z)
        tf_result = KTF.eval(KTF.gather(ref_tf, inds_tf))

        assert_allclose(tf_result, th_result, atol=1e-05)

        if hasattr(th_z, '_keras_shape'):
            assert th_z._keras_shape == th_result.shape

        # test theano shape inference when
        # input shape has None entries
        if K.backend() == 'theano':
            x = K.placeholder(shape=(None, 3, 4))
            indices = K.placeholder(shape=(5, 6), dtype='int32')
            y = K.gather(x, indices)
            assert y._keras_shape == (5, 6, 3, 4)
Exemplo n.º 6
0
    def test_shape_operations(self):
        # concatenate
        xval = np.random.random((4, 3))
        xth = KTH.variable(xval)
        xtf = KTF.variable(xval)
        yval = np.random.random((4, 2))
        yth = KTH.variable(yval)
        ytf = KTF.variable(yval)
        zth = KTH.eval(KTH.concatenate([xth, yth], axis=-1))
        ztf = KTF.eval(KTF.concatenate([xtf, ytf], axis=-1))
        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)

        check_single_tensor_operation('reshape', (4, 2), shape=(8, 1))
        check_single_tensor_operation('permute_dimensions', (4, 2, 3),
                                      pattern=(2, 0, 1))
        check_single_tensor_operation('repeat', (4, 1), n=3)
        check_single_tensor_operation('flatten', (4, 1))
        check_single_tensor_operation('batch_flatten', (20, 2, 5))
        check_single_tensor_operation('expand_dims', (4, 3), axis=-1)
        check_single_tensor_operation('expand_dims', (4, 3, 2), axis=1)
        check_single_tensor_operation('squeeze', (4, 3, 1), axis=2)
        check_single_tensor_operation('squeeze', (4, 1, 1), axis=1)
        check_composed_tensor_operations('reshape', {'shape': (4, 3, 1, 1)},
                                         'squeeze', {'axis': 2}, (4, 3, 1, 1))
Exemplo n.º 7
0
    def test_ctc_decode_greedy(self):
        # Test adapted from tensorflow
        """Test two batch entries - best path decoder."""
        max_time_steps = 6

        seq_len_0 = 4
        input_prob_matrix_0 = np.asarray(
            [
                [1.0, 0.0, 0.0, 0.0],  # t=0
                [0.0, 0.0, 0.4, 0.6],  # t=1
                [0.0, 0.0, 0.4, 0.6],  # t=2
                [0.0, 0.9, 0.1, 0.0],  # t=3
                [0.0, 0.0, 0.0, 0.0],  # t=4 (ignored)
                [0.0, 0.0, 0.0, 0.0],
            ],  # t=5 (ignored)
            dtype=np.float32,
        )
        input_log_prob_matrix_0 = np.log(input_prob_matrix_0)

        seq_len_1 = 5
        # dimensions are time x depth

        input_prob_matrix_1 = np.asarray(
            [
                [0.1, 0.9, 0.0, 0.0],  # t=0
                [0.0, 0.9, 0.1, 0.0],  # t=1
                [0.0, 0.0, 0.1, 0.9],  # t=2
                [0.0, 0.9, 0.1, 0.1],  # t=3
                [0.9, 0.1, 0.0, 0.0],  # t=4
                [0.0, 0.0, 0.0, 0.0],
            ],  # t=5 (ignored)
            dtype=np.float32,
        )

        # len max_time_steps array of batch_size x depth matrices
        inputs = [np.vstack([input_prob_matrix_0[t, :], input_prob_matrix_1[t, :]]) for t in range(max_time_steps)]

        # change tensorflow order to keras backend order
        inputs = KTF.variable(np.asarray(inputs).transpose((1, 0, 2)))
        # batch_size length vector of sequence_lengths
        input_length = KTF.variable(np.array([seq_len_0, seq_len_1], dtype=np.int32))

        # batch_size length vector of negative log probabilities
        log_prob_truth = np.array(
            [np.sum(-np.log([1.0, 0.6, 0.6, 0.9])), np.sum(-np.log([0.9, 0.9, 0.9, 0.9, 0.9]))], np.float32
        )[:, np.newaxis]

        # keras output, unlike tensorflow, is a dense (not sparse) tensor
        decode_truth = np.array([[0, 1, -1], [1, 1, 0]])

        decode_pred_tf, log_prob_pred_tf = KTF.ctc_decode(inputs, input_length, greedy=True)

        assert len(decode_pred_tf) == 1

        decode_pred = KTF.eval(decode_pred_tf[0])
        log_prob_pred = KTF.eval(log_prob_pred_tf)

        assert np.alltrue(decode_truth == decode_pred)
        assert np.allclose(log_prob_truth, log_prob_pred)
Exemplo n.º 8
0
    def test_ctc_decode_greedy(self):
        # Test adapted from tensorflow
        """Test two batch entries - best path decoder."""
        max_time_steps = 6

        seq_len_0 = 4
        input_prob_matrix_0 = np.asarray(
            [[1.0, 0.0, 0.0, 0.0],  # t=0
             [0.0, 0.0, 0.4, 0.6],  # t=1
             [0.0, 0.0, 0.4, 0.6],  # t=2
             [0.0, 0.9, 0.1, 0.0],  # t=3
             [0.0, 0.0, 0.0, 0.0],  # t=4 (ignored)
             [0.0, 0.0, 0.0, 0.0]],  # t=5 (ignored)
            dtype=np.float32)
        input_log_prob_matrix_0 = np.log(input_prob_matrix_0)

        seq_len_1 = 5
        # dimensions are time x depth

        input_prob_matrix_1 = np.asarray(
            [[0.1, 0.9, 0.0, 0.0],  # t=0
             [0.0, 0.9, 0.1, 0.0],  # t=1
             [0.0, 0.0, 0.1, 0.9],  # t=2
             [0.0, 0.9, 0.1, 0.1],  # t=3
             [0.9, 0.1, 0.0, 0.0],  # t=4
             [0.0, 0.0, 0.0, 0.0]],  # t=5 (ignored)
            dtype=np.float32)

        # len max_time_steps array of batch_size x depth matrices
        inputs = [np.vstack([input_prob_matrix_0[t, :],
                             input_prob_matrix_1[t, :]])
                  for t in range(max_time_steps)]

        # change tensorflow order to keras backend order
        inputs = KTF.variable(np.asarray(inputs).transpose((1, 0, 2)))
        # batch_size length vector of sequence_lengths
        input_length = KTF.variable(np.array([seq_len_0, seq_len_1], dtype=np.int32))

        # batch_size length vector of negative log probabilities
        log_prob_truth = np.array([
            np.sum(-np.log([1.0, 0.6, 0.6, 0.9])),
            np.sum(-np.log([0.9, 0.9, 0.9, 0.9, 0.9]))
        ], np.float32)[:, np.newaxis]

        # keras output, unlike tensorflow, is a dense (not sparse) tensor
        decode_truth = np.array([[0, 1, -1], [1, 1, 0]])

        decode_pred_tf, log_prob_pred_tf = KTF.ctc_decode(inputs,
                                                          input_length,
                                                          greedy=True)

        assert len(decode_pred_tf) == 1

        decode_pred = KTF.eval(decode_pred_tf[0])
        log_prob_pred = KTF.eval(log_prob_pred_tf)

        assert np.alltrue(decode_truth == decode_pred)
        assert np.allclose(log_prob_truth, log_prob_pred)
Exemplo n.º 9
0
    def test_ctc(self):
        # simplified version of TensorFlow's test

        label_lens = np.expand_dims(np.asarray([5, 4]), 1)
        input_lens = np.expand_dims(np.asarray([5, 5]),
                                    1)  # number of timesteps

        # the Theano and Tensorflow CTC code use different methods to ensure
        # numerical stability.  The Theano code subtracts out the max
        # before the final log, so the results are different but scale
        # identically and still train properly
        loss_log_probs_tf = [3.34211, 5.42262]
        loss_log_probs_th = [1.73308, 3.81351]

        # dimensions are batch x time x categories
        labels = np.asarray([[0, 1, 2, 1, 0], [0, 1, 1, 0, -1]])
        inputs = np.asarray(
            [[[0.633766, 0.221185, 0.0917319, 0.0129757, 0.0142857, 0.0260553],
              [0.111121, 0.588392, 0.278779, 0.0055756, 0.00569609, 0.010436],
              [
                  0.0357786, 0.633813, 0.321418, 0.00249248, 0.00272882,
                  0.0037688
              ],
              [
                  0.0663296, 0.643849, 0.280111, 0.00283995, 0.0035545,
                  0.00331533
              ],
              [
                  0.458235, 0.396634, 0.123377, 0.00648837, 0.00903441,
                  0.00623107
              ]],
             [[0.30176, 0.28562, 0.0831517, 0.0862751, 0.0816851, 0.161508],
              [0.24082, 0.397533, 0.0557226, 0.0546814, 0.0557528, 0.19549],
              [0.230246, 0.450868, 0.0389607, 0.038309, 0.0391602, 0.202456],
              [0.280884, 0.429522, 0.0326593, 0.0339046, 0.0326856, 0.190345],
              [0.423286, 0.315517, 0.0338439, 0.0393744, 0.0339315, 0.154046]]
             ],
            dtype=np.float32)

        labels_tf = KTF.variable(labels, dtype="int32")
        inputs_tf = KTF.variable(inputs, dtype="float32")
        input_lens_tf = KTF.variable(input_lens, dtype="int32")
        label_lens_tf = KTF.variable(label_lens, dtype="int32")
        res = KTF.eval(
            KTF.ctc_batch_cost(labels_tf, inputs_tf, input_lens_tf,
                               label_lens_tf))
        assert_allclose(res[:, 0], loss_log_probs_tf, atol=1e-05)

        labels_th = KTH.variable(labels, dtype="int32")
        inputs_th = KTH.variable(inputs, dtype="float32")
        input_lens_th = KTH.variable(input_lens, dtype="int32")
        label_lens_th = KTH.variable(label_lens, dtype="int32")
        res = KTH.eval(
            KTH.ctc_batch_cost(labels_th, inputs_th, input_lens_th,
                               label_lens_th))
        assert_allclose(res[0, :], loss_log_probs_th, atol=1e-05)
Exemplo n.º 10
0
    def test_rnn(self):
        # implement a simple RNN
        input_dim = 8
        output_dim = 4
        timesteps = 5

        input_val = np.random.random((32, timesteps, input_dim))
        init_state_val = np.random.random((32, output_dim))
        W_i_val = np.random.random((input_dim, output_dim))
        W_o_val = np.random.random((output_dim, output_dim))

        def rnn_step_fn(input_dim, output_dim, K):
            W_i = K.variable(W_i_val)
            W_o = K.variable(W_o_val)

            def step_function(x, states):
                assert len(states) == 1
                prev_output = states[0]
                output = K.dot(x, W_i) + K.dot(prev_output, W_o)
                return output, [output]

            return step_function

        th_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTH)
        inputs = KTH.variable(input_val)
        initial_states = [KTH.variable(init_state_val)]
        last_output, outputs, new_states = KTH.rnn(th_rnn_step_fn,
                                                   inputs,
                                                   initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        th_last_output = KTH.eval(last_output)
        th_outputs = KTH.eval(outputs)
        assert len(new_states) == 1
        th_state = KTH.eval(new_states[0])

        tf_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTF)
        inputs = KTF.variable(input_val)
        initial_states = [KTF.variable(init_state_val)]
        last_output, outputs, new_states = KTF.rnn(tf_rnn_step_fn,
                                                   inputs,
                                                   initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        tf_last_output = KTF.eval(last_output)
        tf_outputs = KTF.eval(outputs)
        assert len(new_states) == 1
        tf_state = KTF.eval(new_states[0])

        assert_allclose(tf_last_output, th_last_output, atol=1e-04)
        assert_allclose(tf_outputs, th_outputs, atol=1e-04)
        assert_allclose(tf_state, th_state, atol=1e-04)
Exemplo n.º 11
0
    def test_ctc_decode_beam_search(self):
        """Test one batch, two beams - hibernating beam search."""

        depth = 6

        seq_len_0 = 5
        input_prob_matrix_0 = np.asarray(
            [[0.30999, 0.309938, 0.0679938, 0.0673362, 0.0708352, 0.173908],
             [0.215136, 0.439699, 0.0370931, 0.0393967, 0.0381581, 0.230517],
             [0.199959, 0.489485, 0.0233221, 0.0251417, 0.0233289, 0.238763],
             [0.279611, 0.452966, 0.0204795, 0.0209126, 0.0194803, 0.20655],
             [0.51286, 0.288951, 0.0243026, 0.0220788, 0.0219297, 0.129878],
             # Random entry added in at time=5
             [0.155251, 0.164444, 0.173517, 0.176138, 0.169979, 0.160671]],
            dtype=np.float32)

        # len max_time_steps array of batch_size x depth matrices
        inputs = ([input_prob_matrix_0[t, :][np.newaxis, :]
                  for t in range(seq_len_0)] +  # Pad to max_time_steps = 8
                  2 * [np.zeros((1, depth), dtype=np.float32)])

        inputs = KTF.variable(np.asarray(inputs).transpose((1, 0, 2)))

        # batch_size length vector of sequence_lengths
        input_length = KTF.variable(np.array([seq_len_0], dtype=np.int32))
        # batch_size length vector of negative log probabilities
        log_prob_truth = np.array([
            0.584855,  # output beam 0
            0.389139  # output beam 1
        ], np.float32)[np.newaxis, :]

        decode_truth = [np.array([1, 0]), np.array([0, 1, 0])]

        beam_width = 2
        top_paths = 2

        decode_pred_tf, log_prob_pred_tf = KTF.ctc_decode(inputs,
                                                          input_length,
                                                          greedy=False,
                                                          beam_width=beam_width,
                                                          top_paths=top_paths)

        assert len(decode_pred_tf) == top_paths

        log_prob_pred = KTF.eval(log_prob_pred_tf)

        for i in range(top_paths):
            assert np.alltrue(decode_truth[i] == KTF.eval(decode_pred_tf[i]))

        assert np.allclose(log_prob_truth, log_prob_pred)
Exemplo n.º 12
0
    def test_ctc_decode_beam_search(self):
        """Test one batch, two beams - hibernating beam search."""

        depth = 6

        seq_len_0 = 5
        input_prob_matrix_0 = np.asarray(
            [[0.30999, 0.309938, 0.0679938, 0.0673362, 0.0708352, 0.173908],
             [0.215136, 0.439699, 0.0370931, 0.0393967, 0.0381581, 0.230517],
             [0.199959, 0.489485, 0.0233221, 0.0251417, 0.0233289, 0.238763],
             [0.279611, 0.452966, 0.0204795, 0.0209126, 0.0194803, 0.20655],
             [0.51286, 0.288951, 0.0243026, 0.0220788, 0.0219297, 0.129878],
             # Random entry added in at time=5
             [0.155251, 0.164444, 0.173517, 0.176138, 0.169979, 0.160671]],
            dtype=np.float32)

        # len max_time_steps array of batch_size x depth matrices
        inputs = ([input_prob_matrix_0[t, :][np.newaxis, :]
                  for t in range(seq_len_0)] +  # Pad to max_time_steps = 8
                  2 * [np.zeros((1, depth), dtype=np.float32)])

        inputs = KTF.variable(np.asarray(inputs).transpose((1, 0, 2)))

        # batch_size length vector of sequence_lengths
        input_length = KTF.variable(np.array([seq_len_0], dtype=np.int32))
        # batch_size length vector of negative log probabilities
        log_prob_truth = np.array([
            0.584855,  # output beam 0
            0.389139  # output beam 1
        ], np.float32)[np.newaxis, :]

        decode_truth = [np.array([1, 0]), np.array([0, 1, 0])]

        beam_width = 2
        top_paths = 2

        decode_pred_tf, log_prob_pred_tf = KTF.ctc_decode(inputs,
                                                          input_length,
                                                          greedy=False,
                                                          beam_width=beam_width,
                                                          top_paths=top_paths)

        assert len(decode_pred_tf) == top_paths

        log_prob_pred = KTF.eval(log_prob_pred_tf)

        for i in range(top_paths):
            assert np.alltrue(decode_truth[i] == KTF.eval(decode_pred_tf[i]))

        assert np.allclose(log_prob_truth, log_prob_pred)
Exemplo n.º 13
0
def check_two_tensor_operation(function_name, x_input_shape, y_input_shape, **kwargs):
    xval = np.random.random(x_input_shape) - 0.5
    xth = KTH.variable(xval)
    xtf = KTF.variable(xval)

    yval = np.random.random(y_input_shape) - 0.5
    yth = KTH.variable(yval)
    ytf = KTF.variable(yval)

    zth = KTH.eval(getattr(KTH, function_name)(xth, yth, **kwargs))
    ztf = KTF.eval(getattr(KTF, function_name)(xtf, ytf, **kwargs))

    assert zth.shape == ztf.shape
    assert_allclose(zth, ztf, atol=1e-05)
Exemplo n.º 14
0
    def test_rnn(self):
        # implement a simple RNN
        input_dim = 8
        output_dim = 4
        timesteps = 5

        input_val = np.random.random((32, timesteps, input_dim))
        init_state_val = np.random.random((32, output_dim))
        W_i_val = np.random.random((input_dim, output_dim))
        W_o_val = np.random.random((output_dim, output_dim))

        def rnn_step_fn(input_dim, output_dim, K):
            W_i = K.variable(W_i_val)
            W_o = K.variable(W_o_val)

            def step_function(x, states):
                assert len(states) == 1
                prev_output = states[0]
                output = K.dot(x, W_i) + K.dot(prev_output, W_o)
                return output, [output]
            return step_function

        th_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTH)
        inputs = KTH.variable(input_val)
        initial_states = [KTH.variable(init_state_val)]
        last_output, outputs, new_states = KTH.rnn(th_rnn_step_fn, inputs,
                                                   initial_states,
                                                   go_backwards=False,
                                                   masking=False)
        th_last_output = KTH.eval(last_output)
        th_outputs = KTH.eval(outputs)
        assert len(new_states) == 1
        th_state = KTH.eval(new_states[0])

        tf_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTF)
        inputs = KTF.variable(input_val)
        initial_states = [KTF.variable(init_state_val)]
        last_output, outputs, new_states = KTF.rnn(tf_rnn_step_fn, inputs,
                                                   initial_states,
                                                   go_backwards=False,
                                                   masking=False)
        tf_last_output = KTF.eval(last_output)
        tf_outputs = KTF.eval(outputs)
        assert len(new_states) == 1
        tf_state = KTF.eval(new_states[0])

        assert_allclose(tf_last_output, th_last_output, atol=1e-04)
        assert_allclose(tf_outputs, th_outputs, atol=1e-04)
        assert_allclose(tf_state, th_state, atol=1e-04)
Exemplo n.º 15
0
def check_two_tensor_operation(function_name, x_input_shape, y_input_shape,
                               **kwargs):
    xval = np.random.random(x_input_shape) - 0.5
    xth = KTH.variable(xval)
    xtf = KTF.variable(xval)

    yval = np.random.random(y_input_shape) - 0.5
    yth = KTH.variable(yval)
    ytf = KTF.variable(yval)

    zth = KTH.eval(getattr(KTH, function_name)(xth, yth, **kwargs))
    ztf = KTF.eval(getattr(KTF, function_name)(xtf, ytf, **kwargs))

    assert zth.shape == ztf.shape
    assert_allclose(zth, ztf, atol=1e-05)
Exemplo n.º 16
0
    def test_ctc(self):
        # simplified version of TensorFlow's test

        label_lens = np.expand_dims(np.asarray([5, 4]), 1)
        input_lens = np.expand_dims(np.asarray([5, 5]), 1)  # number of timesteps

        # the Theano and Tensorflow CTC code use different methods to ensure
        # numerical stability.  The Theano code subtracts out the max
        # before the final log, so the results are different but scale
        # identically and still train properly
        loss_log_probs_tf = [3.34211, 5.42262]
        loss_log_probs_th = [1.73308, 3.81351]

        # dimensions are batch x time x categories
        labels = np.asarray([[0, 1, 2, 1, 0], [0, 1, 1, 0, -1]])
        inputs = np.asarray(
            [
                [
                    [0.633766, 0.221185, 0.0917319, 0.0129757, 0.0142857, 0.0260553],
                    [0.111121, 0.588392, 0.278779, 0.0055756, 0.00569609, 0.010436],
                    [0.0357786, 0.633813, 0.321418, 0.00249248, 0.00272882, 0.0037688],
                    [0.0663296, 0.643849, 0.280111, 0.00283995, 0.0035545, 0.00331533],
                    [0.458235, 0.396634, 0.123377, 0.00648837, 0.00903441, 0.00623107],
                ],
                [
                    [0.30176, 0.28562, 0.0831517, 0.0862751, 0.0816851, 0.161508],
                    [0.24082, 0.397533, 0.0557226, 0.0546814, 0.0557528, 0.19549],
                    [0.230246, 0.450868, 0.0389607, 0.038309, 0.0391602, 0.202456],
                    [0.280884, 0.429522, 0.0326593, 0.0339046, 0.0326856, 0.190345],
                    [0.423286, 0.315517, 0.0338439, 0.0393744, 0.0339315, 0.154046],
                ],
            ],
            dtype=np.float32,
        )

        labels_tf = KTF.variable(labels, dtype="int32")
        inputs_tf = KTF.variable(inputs, dtype="float32")
        input_lens_tf = KTF.variable(input_lens, dtype="int32")
        label_lens_tf = KTF.variable(label_lens, dtype="int32")
        res = KTF.eval(KTF.ctc_batch_cost(labels_tf, inputs_tf, input_lens_tf, label_lens_tf))
        assert_allclose(res[:, 0], loss_log_probs_tf, atol=1e-05)

        labels_th = KTH.variable(labels, dtype="int32")
        inputs_th = KTH.variable(inputs, dtype="float32")
        input_lens_th = KTH.variable(input_lens, dtype="int32")
        label_lens_th = KTH.variable(label_lens, dtype="int32")
        res = KTH.eval(KTH.ctc_batch_cost(labels_th, inputs_th, input_lens_th, label_lens_th))
        assert_allclose(res[0, :], loss_log_probs_th, atol=1e-05)
Exemplo n.º 17
0
def weighted_categorical_crossentropy(weights):
    """
    A weighted version of keras.objectives.categorical_crossentropy
    
    Variables:
        weights: numpy array of shape (C,) where C is the number of classes
    
    Usage:
        weights = np.array([0.5,2,10]) # Class one at 0.5, class 2 twice the normal weights, class 3 10x.
        loss = weighted_categorical_crossentropy(weights)
        model.compile(loss=loss,optimizer='adam')
    """
    
    weights = K.variable(weights)
        
    def loss(y_true, y_pred):
        # scale predictions so that the class probas of each sample sum to 1
        y_pred /= K.sum(y_pred, axis=-1, keepdims=True)
        # clip to prevent NaN's and Inf's
        y_pred = K.clip(y_pred, K.epsilon(), 1 - K.epsilon())
        # calc
        loss = y_true * K.log(y_pred) * weights
        loss = -K.sum(loss, -1)
        return loss
    
    return loss
Exemplo n.º 18
0
    def test_moments(self):
        input_shape = (10, 10, 10, 10)
        x_0 = np.zeros(input_shape)
        x_1 = np.ones(input_shape)
        x_random = np.random.random(input_shape)

        th_axes = [0, 2, 3]
        tf_axes = [0, 1, 2]

        for ip in [x_0, x_1, x_random]:
            for axes in [th_axes, tf_axes]:
                for keep_dims in [True, False]:
                    ip_th = KTH.variable(ip)
                    th_mean, th_var = KCTH.moments(ip_th,
                                                   axes,
                                                   keep_dims=keep_dims)

                    ip_tf = KTF.variable(ip)
                    tf_mean, tf_var = KCTF.moments(ip_tf,
                                                   axes,
                                                   keep_dims=keep_dims)

                    th_mean_val = KTH.eval(th_mean)
                    tf_mean_val = KTF.eval(tf_mean)
                    th_var_val = KTH.eval(th_var)
                    tf_var_val = KTF.eval(tf_var)

                    assert_allclose(th_mean_val, tf_mean_val, rtol=1e-4)
                    assert_allclose(th_var_val, tf_var_val, rtol=1e-4)
def check_composed_tensor_operations(
    first_function_name,
    first_function_args,
    second_function_name,
    second_function_args,
    input_shape,
):
    """ Creates a random tensor t0 with shape input_shape and compute
                 t1 = first_function_name(t0, **first_function_args)
                 t2 = second_function_name(t1, **second_function_args)
        with both Theano and TensorFlow backends and ensures the answers match.
    """
    val = np.random.random(input_shape) - 0.5
    xth = KTH.variable(val)
    xtf = KTF.variable(val)

    yth = getattr(KCTH, first_function_name)(xth, **first_function_args)
    ytf = getattr(KCTF, first_function_name)(xtf, **first_function_args)

    zth = KTH.eval(
        getattr(KCTH, second_function_name)(yth, **second_function_args))
    ztf = KTF.eval(
        getattr(KCTF, second_function_name)(ytf, **second_function_args))

    assert zth.shape == ztf.shape
    assert_allclose(zth, ztf, atol=1e-05)
Exemplo n.º 20
0
    def test_depth_to_space(self):

        for batch_size in [1, 2, 3]:
            for scale in [2, 3]:
                for channels in [1, 2, 3]:
                    for rows in [1, 2, 3]:
                        for cols in [1, 2, 3]:
                            if K.image_data_format() == 'channels_first':
                                arr = np.arange(batch_size * channels * scale * scale * rows * cols)\
                                    .reshape((batch_size, channels * scale * scale, rows, cols))
                            elif K.image_data_format() == 'channels_last':
                                arr = np.arange(batch_size * rows * cols * scale * scale * channels) \
                                    .reshape((batch_size, rows, cols, channels * scale * scale))

                            arr_tf = KTF.variable(arr)
                            arr_th = KTH.variable(arr)

                            if K.image_data_format() == 'channels_first':
                                expected = arr.reshape((batch_size, scale, scale, channels, rows, cols))\
                                    .transpose((0, 3, 4, 1, 5, 2))\
                                    .reshape((batch_size, channels, rows * scale, cols * scale))
                            elif K.image_data_format() == 'channels_last':
                                expected = arr.reshape((batch_size, rows, cols, scale, scale, channels)) \
                                    .transpose((0, 1, 3, 2, 4, 5))\
                                    .reshape((batch_size, rows * scale, cols * scale, channels))

                            tf_ans = KTF.eval(
                                KCTF.depth_to_space(arr_tf, scale))
                            th_ans = KTH.eval(
                                KCTH.depth_to_space(arr_th, scale))

                            assert tf_ans.shape == expected.shape
                            assert th_ans.shape == expected.shape
                            assert_allclose(expected, tf_ans, atol=1e-05)
                            assert_allclose(expected, th_ans, atol=1e-05)
Exemplo n.º 21
0
    def test_moments(self):
        input_shape = (10, 10, 10, 10)
        x_0 = np.zeros(input_shape)
        x_1 = np.ones(input_shape)
        x_random = np.random.random(input_shape)

        th_axes = [0, 2, 3]
        tf_axes = [0, 1, 2]

        for ip in [x_0, x_1, x_random]:
            for axes in [th_axes, tf_axes]:
                for keep_dims in [True, False]:
                    ip_th = KTH.variable(ip)
                    th_mean, th_var = KCTH.moments(ip_th, axes, keep_dims=keep_dims)

                    ip_tf = KTF.variable(ip)
                    tf_mean, tf_var = KCTF.moments(ip_tf, axes, keep_dims=keep_dims)

                    ip_cntk = KCTK.variable(ip)
                    cntk_mean, cntk_var = KCNTK.moments(ip_cntk, axes, keep_dims=keep_dims)

                    th_mean_val = KTH.eval(th_mean)
                    tf_mean_val = KTF.eval(tf_mean)
                    cntk_mean_val = KCTK.eval(cntk_mean)
                    th_var_val = KTH.eval(th_var)
                    tf_var_val = KTF.eval(tf_var)
                    cntk_var_val = KCTK.eval(cntk_var)

                    # absolute tolerance needed when working with zeros
                    assert_allclose(th_mean_val, tf_mean_val, rtol=1e-4, atol=1e-10)
                    assert_allclose(th_var_val, tf_var_val, rtol=1e-4, atol=1e-10)
                    assert_allclose(th_mean_val, cntk_mean_val, rtol=1e-4, atol=1e-10)
                    assert_allclose(th_var_val, cntk_var_val, rtol=1e-4, atol=1e-10)
Exemplo n.º 22
0
def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)):
    y_pred = K.cast(y_pred >= threshold, 'float32')
    # P = total number of positive labels
    P = K.sum(y_true)
    # TP = total number of correct alerts, alerts from the positive class labels
    TP = K.sum(y_pred * y_true)
    return TP / P
Exemplo n.º 23
0
def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)):
    y_pred = K.cast(y_pred >= threshold, 'float32')
    # N = total number of negative labels
    N = K.sum(1 - y_true)
    # FP = total number of false alerts, alerts from the negative class labels
    TN = K.sum((1 - y_pred) * (1 - y_true))
    return TN / N
Exemplo n.º 24
0
    def test_gradient(self):
        val = np.random.random((4, 2))
        xth = KTH.variable(val)
        xtf = KTF.variable(val)

        expth = xth * KTH.exp(xth)
        exptf = xtf * KTF.exp(xtf)
        lossth = KTH.sum(expth)
        losstf = KTF.sum(exptf)
        zero_lossth = KTH.stop_gradient(lossth)
        zero_losstf = KTF.stop_gradient(losstf)

        gradth = KTH.gradients(lossth, [expth])
        gradtf = KTF.gradients(losstf, [exptf])
        zero_gradth = KTH.gradients(lossth + zero_lossth, [expth])
        zero_gradtf = KTF.gradients(losstf + zero_losstf, [exptf])

        zth = KTH.eval(gradth[0])
        ztf = KTF.eval(gradtf[0])
        zero_zth = KTH.eval(zero_gradth[0])
        zero_ztf = KTF.eval(zero_gradtf[0])
        assert zth.shape == ztf.shape
        assert zero_zth.shape == zero_ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)
        assert_allclose(zero_zth, zero_ztf, atol=1e-05)
        assert_allclose(zero_zth, zth, atol=1e-05)
        assert_allclose(zero_ztf, ztf, atol=1e-05)
Exemplo n.º 25
0
    def get_initial_state(self, x):
        input_shape = self.input_spec[0].shape
        init_nb_row = input_shape[self.row_axis]
        init_nb_col = input_shape[self.column_axis]

        base_initial_state = K.zeros_like(
            x)  # (samples, timesteps) + image_shape
        non_channel_axis = -1 if self.data_format == 'channels_first' else -2
        for _ in range(2):
            base_initial_state = K.sum(base_initial_state,
                                       axis=non_channel_axis)
        base_initial_state = K.sum(base_initial_state,
                                   axis=1)  # (samples, nb_channels)

        initial_states = []
        states_to_pass = ['r', 'c', 'e']
        nlayers_to_pass = {u: self.nb_layers for u in states_to_pass}
        if self.extrap_start_time is not None:
            states_to_pass.append(
                'ahat'
            )  # pass prediction in states so can use as actual for t+1 when extrapolating
            nlayers_to_pass['ahat'] = 1
        for u in states_to_pass:
            for l in range(nlayers_to_pass[u]):
                ds_factor = 2**l
                nb_row = init_nb_row // ds_factor
                nb_col = init_nb_col // ds_factor
                if u in ['r', 'c']:
                    stack_size = self.R_stack_sizes[l]
                elif u == 'e':
                    stack_size = 2 * self.stack_sizes[l]
                elif u == 'ahat':
                    stack_size = self.stack_sizes[l]
                output_size = stack_size * nb_row * nb_col  # flattened size

                reducer = K.zeros((input_shape[self.channel_axis],
                                   output_size))  # (nb_channels, output_size)
                initial_state = K.dot(base_initial_state,
                                      reducer)  # (samples, output_size)
                if self.data_format == 'channels_first':
                    output_shp = (-1, stack_size, nb_row, nb_col)
                else:
                    output_shp = (-1, nb_row, nb_col, stack_size)
                initial_state = K.reshape(initial_state, output_shp)
                initial_states += [initial_state]

        if K._BACKEND == 'theano':
            from theano import tensor as T
            # There is a known issue in the Theano scan op when dealing with inputs whose shape is 1 along a dimension.
            # In our case, this is a problem when training on grayscale images, and the below line fixes it.
            initial_states = [
                T.unbroadcast(init_state, 0, 1)
                for init_state in initial_states
            ]

        if self.extrap_start_time is not None:
            initial_states += [
                K.variable(0, int if K.backend() != 'tensorflow' else 'int32')
            ]  # the last state will correspond to the current timestep
        return initial_states
Exemplo n.º 26
0
def yolo_head(graph, feats, anchors, num_classes):
    with graph.as_default():
        num_anchors = len(anchors)
        anchors_tensor = K.reshape(K.variable(anchors),
                                   [1, 1, 1, num_anchors, 2])

        conv_dims = K.shape(feats)[1:3]
        conv_height_index = K.arange(0, stop=conv_dims[0])
        conv_width_index = K.arange(0, stop=conv_dims[1])
        conv_height_index = K.tile(conv_height_index, [conv_dims[1]])

        conv_width_index = K.tile(K.expand_dims(conv_width_index, 0),
                                  [conv_dims[0], 1])
        conv_width_index = K.flatten(K.transpose(conv_width_index))
        conv_index = K.transpose(K.stack([conv_height_index,
                                          conv_width_index]))
        conv_index = K.reshape(conv_index,
                               [1, conv_dims[0], conv_dims[1], 1, 2])
        conv_index = K.cast(conv_index, K.dtype(feats))

        feats = K.reshape(
            feats,
            [-1, conv_dims[0], conv_dims[1], num_anchors, num_classes + 5])
        conv_dims = K.cast(K.reshape(conv_dims, [1, 1, 1, 1, 2]),
                           K.dtype(feats))

        box_xy = K.sigmoid(feats[..., :2])
        box_wh = K.exp(feats[..., 2:4])
        box_confidence = K.sigmoid(feats[..., 4:5])
        box_class_probs = K.softmax(feats[..., 5:])

        box_xy = (box_xy + conv_index) / conv_dims
        box_wh = box_wh * anchors_tensor / conv_dims

        return box_xy, box_wh, box_confidence, box_class_probs
Exemplo n.º 27
0
def yolo_eval(graph,
              yolo_outputs,
              image_shape,
              max_boxes=10,
              score_threshold=.6,
              iou_threshold=.5):
    with graph.as_default():
        box_xy, box_wh, box_confidence, box_class_probs = yolo_outputs
        boxes = yolo_boxes_to_corners(graph, box_xy, box_wh)
        boxes, scores, classes = yolo_filter_boxes(graph,
                                                   boxes,
                                                   box_confidence,
                                                   box_class_probs,
                                                   threshold=score_threshold)

        # Scale boxes back to original image shape.
        height = image_shape[0]
        width = image_shape[1]
        image_dims = K.stack([height, width, height, width])
        image_dims = K.reshape(image_dims, [1, 4])
        boxes = boxes * image_dims

        # TODO: Something must be done about this ugly hack!
        max_boxes_tensor = K.variable(max_boxes, dtype='int32')
        K.get_session().run(tf.variables_initializer([max_boxes_tensor]))
        nms_index = tf.image.non_max_suppression(boxes,
                                                 scores,
                                                 max_boxes_tensor,
                                                 iou_threshold=iou_threshold)
        boxes = K.gather(boxes, nms_index)
        scores = K.gather(scores, nms_index)
        classes = K.gather(classes, nms_index)

        return boxes, scores, classes
Exemplo n.º 28
0
    def test_function(self):
        val = np.random.random((4, 2))
        input_val = np.random.random((4, 2))

        xth = KTH.variable(val)
        xtf = KTF.variable(val)
        yth = KTH.placeholder(ndim=2)
        ytf = KTF.placeholder(ndim=2)

        exp_th = KTH.square(xth) + yth
        exp_tf = KTF.square(xtf) + ytf

        update_th = xth * 2
        update_tf = xtf * 2
        fth = KTH.function([yth], [exp_th], updates=[(xth, update_th)])
        ftf = KTF.function([ytf], [exp_tf], updates=[(xtf, update_tf)])

        function_outputs_th = fth([input_val])[0]
        function_outputs_tf = ftf([input_val])[0]
        assert function_outputs_th.shape == function_outputs_tf.shape
        assert_allclose(function_outputs_th, function_outputs_tf, atol=1e-05)

        new_val_th = KTH.get_value(xth)
        new_val_tf = KTF.get_value(xtf)
        assert new_val_th.shape == new_val_tf.shape
        assert_allclose(new_val_th, new_val_tf, atol=1e-05)
Exemplo n.º 29
0
    def test_gradient(self):
        val = np.random.random((4, 2))
        xth = KTH.variable(val)
        xtf = KTF.variable(val)

        expth = xth * KTH.exp(xth)
        exptf = xtf * KTF.exp(xtf)
        lossth = KTH.sum(expth)
        losstf = KTF.sum(exptf)
        zero_lossth = KTH.stop_gradient(lossth)
        zero_losstf = KTF.stop_gradient(losstf)

        gradth = KTH.gradients(lossth, [expth])
        gradtf = KTF.gradients(losstf, [exptf])
        zero_gradth = KTH.gradients(lossth + zero_lossth, [expth])
        zero_gradtf = KTF.gradients(losstf + zero_losstf, [exptf])

        zth = KTH.eval(gradth[0])
        ztf = KTF.eval(gradtf[0])
        zero_zth = KTH.eval(zero_gradth[0])
        zero_ztf = KTF.eval(zero_gradtf[0])
        assert zth.shape == ztf.shape
        assert zero_zth.shape == zero_ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)
        assert_allclose(zero_zth, zero_ztf, atol=1e-05)
        assert_allclose(zero_zth, zth, atol=1e-05)
        assert_allclose(zero_ztf, ztf, atol=1e-05)
Exemplo n.º 30
0
    def test_nn_operations(self):
        check_single_tensor_operation('relu', (4, 2), alpha=0.1, max_value=0.5)
        check_single_tensor_operation('softmax', (4, 10))
        check_single_tensor_operation('softplus', (4, 10))

        check_single_tensor_operation('sigmoid', (4, 2))
        check_single_tensor_operation('hard_sigmoid', (4, 2))
        check_single_tensor_operation('tanh', (4, 2))

        # dropout
        val = np.random.random((100, 100))
        xth = KTH.variable(val)
        xtf = KTF.variable(val)
        zth = KTH.eval(KTH.dropout(xth, level=0.2))
        ztf = KTF.eval(KTF.dropout(xtf, level=0.2))
        assert zth.shape == ztf.shape
        # dropout patterns are different, only check mean
        assert np.abs(zth.mean() - ztf.mean()) < 0.05

        check_two_tensor_operation('binary_crossentropy', (4, 2), (4, 2), from_logits=True)
        check_two_tensor_operation('categorical_crossentropy', (4, 2), (4, 2), from_logits=True)
        check_two_tensor_operation('binary_crossentropy', (4, 2), (4, 2), from_logits=False)
        check_two_tensor_operation('categorical_crossentropy', (4, 2), (4, 2), from_logits=False)

        check_single_tensor_operation('l2_normalize', (4, 3), axis=-1)
        check_single_tensor_operation('l2_normalize', (4, 3), axis=1)
Exemplo n.º 31
0
    def test_repeat_elements(self):
        reps = 3
        for ndims in [1, 2, 3]:
            shape = np.arange(2, 2 + ndims)
            arr = np.arange(np.prod(shape)).reshape(shape)
            arr_th = KTH.variable(arr)
            arr_tf = KTF.variable(arr)

            for rep_axis in range(ndims):
                np_rep = np.repeat(arr, reps, axis=rep_axis)
                th_z = KTH.repeat_elements(arr_th, reps, axis=rep_axis)
                th_rep = KTH.eval(th_z)
                tf_rep = KTF.eval(
                    KTF.repeat_elements(arr_tf, reps, axis=rep_axis))

                assert th_rep.shape == np_rep.shape
                assert tf_rep.shape == np_rep.shape
                assert_allclose(np_rep, th_rep, atol=1e-05)
                assert_allclose(np_rep, tf_rep, atol=1e-05)
                if hasattr(th_z, '_keras_shape'):
                    assert th_z._keras_shape == th_rep.shape

                # test theano shape inference when
                # input shape has None entries
                if K.backend() == 'theano':
                    shape = list(shape)
                    shape[rep_axis] = None
                    x = K.placeholder(shape=shape)
                    y = K.repeat_elements(x, reps, axis=rep_axis)
                    assert y._keras_shape == tuple(shape)
Exemplo n.º 32
0
    def test_nn_operations(self):
        check_single_tensor_operation('relu', (4, 2), alpha=0.1, max_value=0.5)
        check_single_tensor_operation('softmax', (4, 10))
        check_single_tensor_operation('softplus', (4, 10))
        check_single_tensor_operation('elu', (4, 10), alpha=0.5)

        check_single_tensor_operation('sigmoid', (4, 2))
        check_single_tensor_operation('hard_sigmoid', (4, 2))
        check_single_tensor_operation('tanh', (4, 2))

        # dropout
        val = np.random.random((100, 100))
        xth = KTH.variable(val)
        xtf = KTF.variable(val)
        zth = KTH.eval(KTH.dropout(xth, level=0.2))
        ztf = KTF.eval(KTF.dropout(xtf, level=0.2))
        assert zth.shape == ztf.shape
        # dropout patterns are different, only check mean
        assert np.abs(zth.mean() - ztf.mean()) < 0.05

        check_two_tensor_operation('binary_crossentropy', (4, 2), (4, 2),
                                   from_logits=True)
        check_two_tensor_operation('categorical_crossentropy', (4, 2), (4, 2),
                                   from_logits=True)
        check_two_tensor_operation('binary_crossentropy', (4, 2), (4, 2),
                                   from_logits=False)
        check_two_tensor_operation('categorical_crossentropy', (4, 2), (4, 2),
                                   from_logits=False)

        check_single_tensor_operation('l2_normalize', (4, 3), axis=-1)
        check_single_tensor_operation('l2_normalize', (4, 3), axis=1)
Exemplo n.º 33
0
    def test_function(self):
        val = np.random.random((4, 2))
        input_val = np.random.random((4, 2))

        xth = KTH.variable(val)
        xtf = KTF.variable(val)
        yth = KTH.placeholder(ndim=2)
        ytf = KTF.placeholder(ndim=2)

        exp_th = KTH.square(xth) + yth
        exp_tf = KTF.square(xtf) + ytf

        update_th = xth * 2
        update_tf = xtf * 2
        fth = KTH.function([yth], [exp_th], updates=[(xth, update_th)])
        ftf = KTF.function([ytf], [exp_tf], updates=[(xtf, update_tf)])

        function_outputs_th = fth([input_val])[0]
        function_outputs_tf = ftf([input_val])[0]
        assert function_outputs_th.shape == function_outputs_tf.shape
        assert_allclose(function_outputs_th, function_outputs_tf, atol=1e-05)

        new_val_th = KTH.get_value(xth)
        new_val_tf = KTF.get_value(xtf)
        assert new_val_th.shape == new_val_tf.shape
        assert_allclose(new_val_th, new_val_tf, atol=1e-05)
Exemplo n.º 34
0
    def test_repeat_elements(self):
        reps = 3
        for ndims in [1, 2, 3]:
            shape = np.arange(2, 2 + ndims)
            arr = np.arange(np.prod(shape)).reshape(shape)
            arr_th = KTH.variable(arr)
            arr_tf = KTF.variable(arr)

            for rep_axis in range(ndims):
                np_rep = np.repeat(arr, reps, axis=rep_axis)
                th_z = KTH.repeat_elements(arr_th, reps, axis=rep_axis)
                th_rep = KTH.eval(th_z)
                tf_rep = KTF.eval(
                    KTF.repeat_elements(arr_tf, reps, axis=rep_axis))

                assert th_rep.shape == np_rep.shape
                assert tf_rep.shape == np_rep.shape
                assert_allclose(np_rep, th_rep, atol=1e-05)
                assert_allclose(np_rep, tf_rep, atol=1e-05)
                if hasattr(th_z, '_keras_shape'):
                    assert th_z._keras_shape == th_rep.shape

                # test theano shape inference when
                # input shape has None entries
                if K.backend() == 'theano':
                    shape = list(shape)
                    shape[rep_axis] = None
                    x = K.placeholder(shape=shape)
                    y = K.repeat_elements(x, reps, axis=rep_axis)
                    assert y._keras_shape == tuple(shape)
Exemplo n.º 35
0
    def test_conv2d(self):
        # TF kernel shape: (rows, cols, input_depth, depth)

        # channels_first input shape: (n, input_depth, rows, cols)
        for input_shape in [(2, 3, 4, 5), (2, 3, 5, 6)]:
            for kernel_shape in [(2, 2, 3, 4), (4, 3, 3, 4)]:
                for padding in ['valid', 'same']:
                    xval = np.random.random(input_shape)

                    xth = KTH.variable(xval)
                    xtf = KTF.variable(xval)

                    kernel_val = np.random.random(kernel_shape) - 0.5

                    kernel_th = KTH.variable(convert_kernel(kernel_val))
                    kernel_tf = KTF.variable(kernel_val)

                    zth = KTH.eval(
                        KTH.conv2d(xth,
                                   kernel_th,
                                   data_format='channels_first'))
                    ztf = KTF.eval(
                        KTF.conv2d(xtf,
                                   kernel_tf,
                                   data_format='channels_first'))

                    assert zth.shape == ztf.shape
                    assert_allclose(zth, ztf, atol=1e-05)

        input_shape = (1, 6, 5, 3)
        kernel_shape = (3, 3, 3, 2)

        xval = np.random.random(input_shape)

        xth = KTH.variable(xval)
        xtf = KTF.variable(xval)

        kernel_val = np.random.random(kernel_shape) - 0.5

        kernel_th = KTH.variable(convert_kernel(kernel_val))
        kernel_tf = KTF.variable(kernel_val)

        zth = KTH.eval(KTH.conv2d(xth, kernel_th, data_format='channels_last'))
        ztf = KTF.eval(KTF.conv2d(xtf, kernel_tf, data_format='channels_last'))

        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)
Exemplo n.º 36
0
    def test_gather(self):
        shape = (10, 2, 3)
        ref = np.arange(np.prod(shape)).reshape(shape)
        ref_th = KTH.variable(ref)
        ref_tf = KTF.variable(ref)

        inds = [1, 3, 7, 9]
        inds_th = KTH.variable(inds, dtype='int32')
        inds_tf = KTF.variable(inds, dtype='int32')
        th_z = KTH.gather(ref_th, inds_th)
        th_result = KTH.eval(th_z)
        tf_result = KTF.eval(KTF.gather(ref_tf, inds_tf))

        assert_allclose(tf_result, th_result, atol=1e-05)

        if hasattr(th_z, '_keras_shape'):
            assert th_z._keras_shape == th_result.shape
Exemplo n.º 37
0
    def test_conv3d(self):
        # TH input shape: (samples, input_depth, conv_dim1, conv_dim2, conv_dim3)
        # TF input shape: (samples, conv_dim1, conv_dim2, conv_dim3, input_depth)
        # TH kernel shape: (depth, input_depth, x, y, z)
        # TF kernel shape: (x, y, z, input_depth, depth)

        # test in data_format = channels_first
        for input_shape in [(2, 3, 4, 5, 4), (2, 3, 5, 4, 6)]:
            for kernel_shape in [(2, 2, 2, 3, 4), (3, 2, 4, 3, 4)]:
                xval = np.random.random(input_shape)

                xth = KTH.variable(xval)
                xtf = KTF.variable(xval)

                kernel_val = np.random.random(kernel_shape) - 0.5

                kernel_th = KTH.variable(convert_kernel(kernel_val))
                kernel_tf = KTF.variable(kernel_val)

                zth = KTH.eval(
                    KTH.conv3d(xth, kernel_th, data_format='channels_first'))
                ztf = KTF.eval(
                    KTF.conv3d(xtf, kernel_tf, data_format='channels_first'))

                assert zth.shape == ztf.shape
                assert_allclose(zth, ztf, atol=1e-05)

        # test in data_format = channels_last
        input_shape = (1, 2, 2, 2, 1)
        kernel_shape = (2, 2, 2, 1, 1)

        xval = np.random.random(input_shape)

        xth = KTH.variable(xval)
        xtf = KTF.variable(xval)

        kernel_val = np.random.random(kernel_shape) - 0.5

        kernel_th = KTH.variable(convert_kernel(kernel_val))
        kernel_tf = KTF.variable(kernel_val)

        zth = KTH.eval(KTH.conv3d(xth, kernel_th, data_format='channels_last'))
        ztf = KTF.eval(KTF.conv3d(xtf, kernel_tf, data_format='channels_last'))

        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)
Exemplo n.º 38
0
    def test_extract(self):
        for input_shape in [(1, 3, 40, 40), (1, 3, 10, 10)]:
            for kernel_shape in [2, 5]:
                xval = np.random.random(input_shape)
                kernel = [kernel_shape, kernel_shape]
                strides = [kernel_shape, kernel_shape]
                xth = KTH.variable(xval)
                xtf = KTF.variable(xval)
                ztf = KTF.eval(
                    KCTF.extract_image_patches(xtf,
                                               kernel,
                                               strides,
                                               dim_ordering='th',
                                               border_mode="valid"))
                zth = KTH.eval(
                    KCTH.extract_image_patches(xth,
                                               kernel,
                                               strides,
                                               dim_ordering='th',
                                               border_mode="valid"))
                assert zth.shape == ztf.shape
                assert_allclose(zth, ztf, atol=1e-02)

        for input_shape in [(1, 40, 40, 3), (1, 10, 10, 3)]:
            for kernel_shape in [2, 5]:
                xval = np.random.random(input_shape)

                kernel = [kernel_shape, kernel_shape]
                strides = [kernel_shape, kernel_shape]
                xth = KTH.variable(xval)
                xtf = KTF.variable(xval)
                ztf = KTF.eval(
                    KCTF.extract_image_patches(xtf,
                                               kernel,
                                               strides,
                                               dim_ordering='tf',
                                               border_mode="same"))
                zth = KTH.eval(
                    KCTH.extract_image_patches(xth,
                                               kernel,
                                               strides,
                                               dim_ordering='tf',
                                               border_mode="same"))
                assert zth.shape == ztf.shape
                assert_allclose(zth, ztf, atol=1e-02)
Exemplo n.º 39
0
    def test_extract(self):
        for input_shape in [(1, 3, 40, 40), (1, 3, 10, 10)]:
            for kernel_shape in [2, 5]:
                xval = np.random.random(input_shape)
                kernel = [kernel_shape, kernel_shape]
                strides = [kernel_shape, kernel_shape]
                xth = KTH.variable(xval)
                xtf = KTF.variable(xval)
                ztf = KTF.eval(
                    KCTF.extract_image_patches(xtf,
                                               kernel,
                                               strides,
                                               data_format='channels_first',
                                               padding='valid'))
                zth = KTH.eval(
                    KCTH.extract_image_patches(xth,
                                               kernel,
                                               strides,
                                               data_format='channels_first',
                                               padding='valid'))
                assert zth.shape == ztf.shape
                assert_allclose(zth, ztf, atol=1e-02)

        for input_shape in [(1, 40, 40, 3), (1, 10, 10, 3)]:
            for kernel_shape in [2, 5]:
                xval = np.random.random(input_shape)

                kernel = [kernel_shape, kernel_shape]
                strides = [kernel_shape, kernel_shape]
                xth = KTH.variable(xval)
                xtf = KTF.variable(xval)
                ztf = KTF.eval(
                    KCTF.extract_image_patches(xtf,
                                               kernel,
                                               strides,
                                               data_format='channels_last',
                                               padding='same'))
                zth = KTH.eval(
                    KCTH.extract_image_patches(xth,
                                               kernel,
                                               strides,
                                               data_format='channels_last',
                                               padding='same'))
                assert zth.shape == ztf.shape
                assert_allclose(zth, ztf, atol=1e-02)
Exemplo n.º 40
0
    def test_in_top_k(self):
        batch_size = 20
        num_classes = 10

        # Random prediction test case
        predictions = np.random.random(
            (batch_size, num_classes)).astype('float32')
        targets = np.random.randint(num_classes,
                                    size=batch_size,
                                    dtype='int32')

        predictions_th = KTH.variable(predictions, dtype='float32')
        targets_th = KTH.variable(targets, dtype='int32')
        predictions_tf = KTF.variable(predictions, dtype='float32')
        targets_tf = KTF.variable(targets, dtype='int32')

        for k in range(1, num_classes + 1):
            res_th = KTH.eval(KTH.in_top_k(predictions_th, targets_th, k))
            res_tf = KTF.eval(KTF.in_top_k(predictions_tf, targets_tf, k))

            assert res_th.shape == res_tf.shape
            assert_allclose(res_th, res_tf, atol=1e-05)

        # Identical prediction test case:
        # randomly set half of the predictions to an identical value
        num_identical = num_classes // 2
        for i in range(batch_size):
            idx_identical = np.random.choice(num_classes,
                                             size=num_identical,
                                             replace=False)
            predictions[i, idx_identical] = predictions[i, 0]
        targets = np.zeros(batch_size, dtype='int32')

        predictions_th = KTH.variable(predictions, dtype='float32')
        targets_th = KTH.variable(targets, dtype='int32')
        predictions_tf = KTF.variable(predictions, dtype='float32')
        targets_tf = KTF.variable(targets, dtype='int32')

        for k in range(1, num_classes + 1):
            res_th = KTH.eval(KTH.in_top_k(predictions_th, targets_th, k))
            res_tf = KTF.eval(KTF.in_top_k(predictions_tf, targets_tf, k))

            assert res_th.shape == res_tf.shape
            assert_allclose(res_th, res_tf, atol=1e-05)
Exemplo n.º 41
0
    def test_conv3d(self):
        # TH input shape: (samples, input_depth, conv_dim1, conv_dim2, conv_dim3)
        # TF input shape: (samples, conv_dim1, conv_dim2, conv_dim3, input_depth)
        # TH kernel shape: (depth, input_depth, x, y, z)
        # TF kernel shape: (x, y, z, input_depth, depth)

        # test in dim_ordering = th
        for input_shape in [(2, 3, 4, 5, 4), (2, 3, 5, 4, 6)]:
            for kernel_shape in [(4, 3, 2, 2, 2), (4, 3, 3, 2, 4)]:
                xval = np.random.random(input_shape)

                xth = KTH.variable(xval)
                xtf = KTF.variable(xval)

                kernel_val = np.random.random(kernel_shape) - 0.5

                kernel_th = KTH.variable(convert_kernel(kernel_val))
                kernel_tf = KTF.variable(kernel_val)

                zth = KTH.eval(KTH.conv3d(xth, kernel_th))
                ztf = KTF.eval(KTF.conv3d(xtf, kernel_tf))

                assert zth.shape == ztf.shape
                assert_allclose(zth, ztf, atol=1e-05)

        # test in dim_ordering = tf
        input_shape = (1, 2, 2, 2, 1)
        kernel_shape = (2, 2, 2, 1, 1)

        xval = np.random.random(input_shape)

        xth = KTH.variable(xval)
        xtf = KTF.variable(xval)

        kernel_val = np.random.random(kernel_shape) - 0.5

        kernel_th = KTH.variable(convert_kernel(kernel_val, dim_ordering='tf'))
        kernel_tf = KTF.variable(kernel_val)

        zth = KTH.eval(KTH.conv3d(xth, kernel_th, dim_ordering='tf'))
        ztf = KTF.eval(KTF.conv3d(xtf, kernel_tf, dim_ordering='tf'))

        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)
Exemplo n.º 42
0
def check_single_tensor_operation(function_name, input_shape, **kwargs):
    val = np.random.random(input_shape) - 0.5
    xth = KTH.variable(val)
    xtf = KTF.variable(val)

    zth = KTH.eval(getattr(KCTH, function_name)(xth, **kwargs))
    ztf = KTF.eval(getattr(KCTF, function_name)(xtf, **kwargs))

    assert zth.shape == ztf.shape
    assert_allclose(zth, ztf, atol=1e-05)
Exemplo n.º 43
0
    def test_tile(self):
        shape = (3, 4)
        arr = np.arange(np.prod(shape)).reshape(shape)
        arr_th = KTH.variable(arr)
        arr_tf = KTF.variable(arr)

        n = (2, 1)
        th_rep = KTH.eval(KTH.tile(arr_th, n))
        tf_rep = KTF.eval(KTF.tile(arr_tf, n))
        assert_allclose(tf_rep, th_rep, atol=1e-05)
Exemplo n.º 44
0
    def test_tile(self):
        shape = (3, 4)
        arr = np.arange(np.prod(shape)).reshape(shape)
        arr_th = KTH.variable(arr)
        arr_tf = KTF.variable(arr)

        n = (2, 1)
        th_rep = KTH.eval(KTH.tile(arr_th, n))
        tf_rep = KTF.eval(KTF.tile(arr_tf, n))
        assert_allclose(tf_rep, th_rep, atol=1e-05)
Exemplo n.º 45
0
def check_single_tensor_operation(function_name, input_shape, **kwargs):
    val = np.random.random(input_shape) - 0.5
    xth = KTH.variable(val)
    xtf = KTF.variable(val)

    zth = KTH.eval(getattr(KTH, function_name)(xth, **kwargs))
    ztf = KTF.eval(getattr(KTF, function_name)(xtf, **kwargs))

    assert zth.shape == ztf.shape
    assert_allclose(zth, ztf, atol=1e-05)
Exemplo n.º 46
0
    def test_shape_operations(self):
        # concatenate
        xval = np.random.random((4, 3))
        xth = KTH.variable(xval)
        xtf = KTF.variable(xval)
        yval = np.random.random((4, 2))
        yth = KTH.variable(yval)
        ytf = KTF.variable(yval)
        zth = KTH.eval(KTH.concatenate([xth, yth], axis=-1))
        ztf = KTF.eval(KTF.concatenate([xtf, ytf], axis=-1))
        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)

        check_single_tensor_operation("reshape", (4, 2), shape=(8, 1))
        check_single_tensor_operation("permute_dimensions", (4, 2, 3), pattern=(2, 0, 1))
        check_single_tensor_operation("repeat", (4, 1), n=3)
        check_single_tensor_operation("flatten", (4, 1))
        check_single_tensor_operation("expand_dims", (4, 3), dim=-1)
        check_single_tensor_operation("expand_dims", (4, 3, 2), dim=1)
        check_single_tensor_operation("squeeze", (4, 3, 1), axis=2)
Exemplo n.º 47
0
    def test_conv2d(self):
        # TF kernel shape: (rows, cols, input_depth, depth)

        # channels_first input shape: (n, input_depth, rows, cols)
        for input_shape in [(2, 3, 4, 5), (2, 3, 5, 6)]:
            for kernel_shape in [(2, 2, 3, 4), (4, 3, 3, 4)]:
                for padding in ['valid', 'same']:
                    xval = np.random.random(input_shape)

                    xth = KTH.variable(xval)
                    xtf = KTF.variable(xval)

                    kernel_val = np.random.random(kernel_shape) - 0.5

                    kernel_th = KTH.variable(convert_kernel(kernel_val))
                    kernel_tf = KTF.variable(kernel_val)

                    zth = KTH.eval(KTH.conv2d(xth, kernel_th, data_format='channels_first'))
                    ztf = KTF.eval(KTF.conv2d(xtf, kernel_tf, data_format='channels_first'))

                    assert zth.shape == ztf.shape
                    assert_allclose(zth, ztf, atol=1e-05)

        input_shape = (1, 6, 5, 3)
        kernel_shape = (3, 3, 3, 2)

        xval = np.random.random(input_shape)

        xth = KTH.variable(xval)
        xtf = KTF.variable(xval)

        kernel_val = np.random.random(kernel_shape) - 0.5

        kernel_th = KTH.variable(convert_kernel(kernel_val))
        kernel_tf = KTF.variable(kernel_val)

        zth = KTH.eval(KTH.conv2d(xth, kernel_th, data_format='channels_last'))
        ztf = KTF.eval(KTF.conv2d(xtf, kernel_tf, data_format='channels_last'))

        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)
Exemplo n.º 48
0
    def test_conv2d(self):
        # TH kernel shape: (depth, input_depth, rows, cols)
        # TF kernel shape: (rows, cols, input_depth, depth)

        for input_shape in [(2, 3, 4, 5), (2, 3, 5, 6)]:
            for kernel_shape in [(4, 3, 2, 2), (4, 3, 3, 4)]:
                xval = np.random.random(input_shape)

                xth = KTH.variable(xval)
                xtf = KTF.variable(xval)

                kernel_val = np.random.random(kernel_shape) - 0.5

                kernel_th = KTH.variable(convert_kernel(kernel_val))
                kernel_tf = KTF.variable(kernel_val)

                zth = KTH.eval(KTH.conv2d(xth, kernel_th))
                ztf = KTF.eval(KTF.conv2d(xtf, kernel_tf))

                assert zth.shape == ztf.shape
                assert_allclose(zth, ztf, atol=1e-05)

        input_shape = (1, 6, 5, 3)
        kernel_shape = (3, 3, 3, 2)

        xval = np.random.random(input_shape)

        xth = KTH.variable(xval)
        xtf = KTF.variable(xval)

        kernel_val = np.random.random(kernel_shape) - 0.5

        kernel_th = KTH.variable(convert_kernel(kernel_val, dim_ordering='tf'))
        kernel_tf = KTF.variable(kernel_val)

        zth = KTH.eval(KTH.conv2d(xth, kernel_th, dim_ordering='tf'))
        ztf = KTF.eval(KTF.conv2d(xtf, kernel_tf, dim_ordering='tf'))

        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)
Exemplo n.º 49
0
    def test_switch(self):
        val = np.random.random()
        xth = KTH.variable(val)
        xth = KTH.switch(xth >= 0.5, xth * 0.1, xth * 0.2)

        xtf = KTF.variable(val)
        xtf = KTF.switch(xtf >= 0.5, xtf * 0.1, xtf * 0.2)

        zth = KTH.eval(xth)
        ztf = KTF.eval(xtf)

        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)
Exemplo n.º 50
0
    def test_in_top_k(self):
        batch_size = 20
        num_classes = 10

        # Random prediction test case
        predictions = np.random.random((batch_size, num_classes)).astype('float32')
        targets = np.random.randint(num_classes, size=batch_size, dtype='int32')

        predictions_th = KTH.variable(predictions, dtype='float32')
        targets_th = KTH.variable(targets, dtype='int32')
        predictions_tf = KTF.variable(predictions, dtype='float32')
        targets_tf = KTF.variable(targets, dtype='int32')

        for k in range(1, num_classes + 1):
            res_th = KTH.eval(KTH.in_top_k(predictions_th, targets_th, k))
            res_tf = KTF.eval(KTF.in_top_k(predictions_tf, targets_tf, k))

            assert res_th.shape == res_tf.shape
            assert_allclose(res_th, res_tf, atol=1e-05)

        # Identical prediction test case:
        # randomly set half of the predictions to an identical value
        num_identical = num_classes // 2
        for i in range(batch_size):
            idx_identical = np.random.choice(num_classes, size=num_identical, replace=False)
            predictions[i, idx_identical] = predictions[i, 0]
        targets = np.zeros(batch_size, dtype='int32')

        predictions_th = KTH.variable(predictions, dtype='float32')
        targets_th = KTH.variable(targets, dtype='int32')
        predictions_tf = KTF.variable(predictions, dtype='float32')
        targets_tf = KTF.variable(targets, dtype='int32')

        for k in range(1, num_classes + 1):
            res_th = KTH.eval(KTH.in_top_k(predictions_th, targets_th, k))
            res_tf = KTF.eval(KTF.in_top_k(predictions_tf, targets_tf, k))

            assert res_th.shape == res_tf.shape
            assert_allclose(res_th, res_tf, atol=1e-05)
Exemplo n.º 51
0
    def test_tile(self):
        shape = (3, 4)
        arr = np.arange(np.prod(shape)).reshape(shape)
        arr_th = KTH.variable(arr)
        arr_tf = KTF.variable(arr)

        n = (2, 1)
        th_z = KTH.tile(arr_th, n)
        th_rep = KTH.eval(th_z)
        tf_rep = KTF.eval(KTF.tile(arr_tf, n))
        assert_allclose(tf_rep, th_rep, atol=1e-05)
        if hasattr(th_z, '_keras_shape'):
            assert th_z._keras_shape == th_rep.shape
Exemplo n.º 52
0
    def test_repeat_elements(self):
        reps = 3
        for ndims in [1, 2, 3]:
            shape = np.arange(2, 2 + ndims)
            arr = np.arange(np.prod(shape)).reshape(shape)
            arr_th = KTH.variable(arr)
            arr_tf = KTF.variable(arr)

            for rep_axis in range(ndims):
                np_rep = np.repeat(arr, reps, axis=rep_axis)
                th_rep = KTH.eval(KTH.repeat_elements(arr_th, reps, axis=rep_axis))
                tf_rep = KTF.eval(KTF.repeat_elements(arr_tf, reps, axis=rep_axis))

                assert th_rep.shape == np_rep.shape
                assert tf_rep.shape == np_rep.shape
                assert_allclose(np_rep, th_rep, atol=1e-05)
                assert_allclose(np_rep, tf_rep, atol=1e-05)
Exemplo n.º 53
0
    def test_rnn_no_states(self):
        # implement a simple RNN without states
        input_dim = 8
        output_dim = 4
        timesteps = 5

        input_val = np.random.random((32, timesteps, input_dim))
        W_i_val = np.random.random((input_dim, output_dim))

        def rnn_step_fn(input_dim, output_dim, K):
            W_i = K.variable(W_i_val)

            def step_function(x, states):
                assert len(states) == 0
                output = K.dot(x, W_i)
                return output, []
            return step_function

        # test default setup
        th_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTH)
        th_inputs = KTH.variable(input_val)
        th_initial_states = []
        last_output, outputs, new_states = KTH.rnn(th_rnn_step_fn, th_inputs,
                                                   th_initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        th_last_output = KTH.eval(last_output)
        th_outputs = KTH.eval(outputs)
        assert len(new_states) == 0

        tf_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTF)
        tf_inputs = KTF.variable(input_val)
        tf_initial_states = []
        last_output, outputs, new_states = KTF.rnn(tf_rnn_step_fn, tf_inputs,
                                                   tf_initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        tf_last_output = KTF.eval(last_output)
        tf_outputs = KTF.eval(outputs)
        assert len(new_states) == 0

        assert_allclose(tf_last_output, th_last_output, atol=1e-04)
        assert_allclose(tf_outputs, th_outputs, atol=1e-04)
Exemplo n.º 54
0
def check_composed_tensor_operations(first_function_name, first_function_args,
                                     second_function_name, second_function_args,
                                     input_shape):
    ''' Creates a random tensor t0 with shape input_shape and compute
                 t1 = first_function_name(t0, **first_function_args)
                 t2 = second_function_name(t1, **second_function_args)
        with both Theano and TensorFlow backends and ensures the answers match.
    '''
    val = np.random.random(input_shape) - 0.5
    xth = KTH.variable(val)
    xtf = KTF.variable(val)

    yth = getattr(KTH, first_function_name)(xth, **first_function_args)
    ytf = getattr(KTF, first_function_name)(xtf, **first_function_args)

    zth = KTH.eval(getattr(KTH, second_function_name)(yth, **second_function_args))
    ztf = KTF.eval(getattr(KTF, second_function_name)(ytf, **second_function_args))

    assert zth.shape == ztf.shape
    assert_allclose(zth, ztf, atol=1e-05)
Exemplo n.º 55
0
    def test_value_manipulation(self):
        val = np.random.random((4, 2))
        xth = KTH.variable(val)
        xtf = KTF.variable(val)

        # get_value
        valth = KTH.get_value(xth)
        valtf = KTF.get_value(xtf)
        assert valtf.shape == valth.shape
        assert_allclose(valth, valtf, atol=1e-05)

        # set_value
        val = np.random.random((4, 2))
        KTH.set_value(xth, val)
        KTF.set_value(xtf, val)

        valth = KTH.get_value(xth)
        valtf = KTF.get_value(xtf)
        assert valtf.shape == valth.shape
        assert_allclose(valth, valtf, atol=1e-05)

        # count_params
        assert KTH.count_params(xth) == KTF.count_params(xtf)
Exemplo n.º 56
0
    def test_tile(self):
        shape = (3, 4)
        arr = np.arange(np.prod(shape)).reshape(shape)
        arr_th = KTH.variable(arr)
        arr_tf = KTF.variable(arr)

        n = (2, 1)
        th_z = KTH.tile(arr_th, n)
        th_rep = KTH.eval(th_z)
        tf_rep = KTF.eval(KTF.tile(arr_tf, n))
        assert_allclose(tf_rep, th_rep, atol=1e-05)
        if hasattr(th_z, '_keras_shape'):
            assert th_z._keras_shape == th_rep.shape

        # test theano shape inference when
        # input shape has None entries
        if K.backend() == 'theano':
            x = K.placeholder(shape=(None, 4))
            n = 2
            y = KTH.tile(x, n)
            assert y._keras_shape == (None, 8)
            n = (4, 3)
            y = K.tile(x, n)
            assert y._keras_shape == (None, 12)
Exemplo n.º 57
0
    def test_rnn(self):
        # implement a simple RNN
        input_dim = 8
        output_dim = 4
        timesteps = 5

        input_val = np.random.random((32, timesteps, input_dim))
        init_state_val = np.random.random((32, output_dim))
        W_i_val = np.random.random((input_dim, output_dim))
        W_o_val = np.random.random((output_dim, output_dim))

        def rnn_step_fn(input_dim, output_dim, K):
            W_i = K.variable(W_i_val)
            W_o = K.variable(W_o_val)

            def step_function(x, states):
                assert len(states) == 1
                prev_output = states[0]
                output = K.dot(x, W_i) + K.dot(prev_output, W_o)
                return output, [output]
            return step_function

        th_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTH)
        th_inputs = KTH.variable(input_val)
        th_initial_states = [KTH.variable(init_state_val)]
        last_output, outputs, new_states = KTH.rnn(th_rnn_step_fn, th_inputs,
                                                   th_initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        th_last_output = KTH.eval(last_output)
        th_outputs = KTH.eval(outputs)
        assert len(new_states) == 1
        th_state = KTH.eval(new_states[0])

        tf_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTF)
        tf_inputs = KTF.variable(input_val)
        tf_initial_states = [KTF.variable(init_state_val)]
        last_output, outputs, new_states = KTF.rnn(tf_rnn_step_fn, tf_inputs,
                                                   tf_initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        tf_last_output = KTF.eval(last_output)
        tf_outputs = KTF.eval(outputs)
        assert len(new_states) == 1
        tf_state = KTF.eval(new_states[0])

        assert_allclose(tf_last_output, th_last_output, atol=1e-04)
        assert_allclose(tf_outputs, th_outputs, atol=1e-04)
        assert_allclose(tf_state, th_state, atol=1e-04)

        # test unroll
        unrolled_last_output, unrolled_outputs, unrolled_new_states = KTH.rnn(
            th_rnn_step_fn, th_inputs,
            th_initial_states,
            go_backwards=False,
            mask=None,
            unroll=True,
            input_length=timesteps)

        unrolled_th_last_output = KTH.eval(unrolled_last_output)
        unrolled_th_outputs = KTH.eval(unrolled_outputs)
        assert len(unrolled_new_states) == 1
        unrolled_th_state = KTH.eval(unrolled_new_states[0])
        assert_allclose(th_last_output, unrolled_th_last_output, atol=1e-04)
        assert_allclose(th_outputs, unrolled_th_outputs, atol=1e-04)
        assert_allclose(th_state, unrolled_th_state, atol=1e-04)

        # test unroll with backwards = True
        bwd_last_output, bwd_outputs, bwd_new_states = KTH.rnn(
            th_rnn_step_fn, th_inputs,
            th_initial_states,
            go_backwards=True,
            mask=None)
        bwd_th_last_output = KTH.eval(bwd_last_output)
        bwd_th_outputs = KTH.eval(bwd_outputs)
        assert len(bwd_new_states) == 1
        bwd_th_state = KTH.eval(bwd_new_states[0])

        bwd_unrolled_last_output, bwd_unrolled_outputs, bwd_unrolled_new_states = KTH.rnn(
            th_rnn_step_fn, th_inputs,
            th_initial_states,
            go_backwards=True,
            mask=None,
            unroll=True,
            input_length=timesteps)

        bwd_unrolled_th_last_output = KTH.eval(bwd_unrolled_last_output)
        bwd_unrolled_th_outputs = KTH.eval(bwd_unrolled_outputs)
        assert len(bwd_unrolled_new_states) == 1
        bwd_unrolled_th_state = KTH.eval(bwd_unrolled_new_states[0])
        assert_allclose(bwd_th_last_output, bwd_unrolled_th_last_output, atol=1e-04)
        assert_allclose(bwd_th_outputs, bwd_unrolled_th_outputs, atol=1e-04)
        assert_allclose(bwd_th_state, bwd_unrolled_th_state, atol=1e-04)

        # test unroll with masking
        np_mask = np.random.randint(2, size=(32, timesteps))
        th_mask = KTH.variable(np_mask)

        masked_last_output, masked_outputs, masked_new_states = KTH.rnn(
            th_rnn_step_fn, th_inputs,
            th_initial_states,
            go_backwards=False,
            mask=th_mask)
        masked_th_last_output = KTH.eval(masked_last_output)
        masked_th_outputs = KTH.eval(masked_outputs)
        assert len(masked_new_states) == 1
        masked_th_state = KTH.eval(masked_new_states[0])

        unrolled_masked_last_output, unrolled_masked_outputs, unrolled_masked_new_states = KTH.rnn(
            th_rnn_step_fn, th_inputs,
            th_initial_states,
            go_backwards=False,
            mask=th_mask,
            unroll=True,
            input_length=timesteps)
        unrolled_masked_th_last_output = KTH.eval(unrolled_masked_last_output)
        unrolled_masked_th_outputs = KTH.eval(unrolled_masked_outputs)
        assert len(unrolled_masked_new_states) == 1
        unrolled_masked_th_state = KTH.eval(unrolled_masked_new_states[0])

        assert_allclose(unrolled_masked_th_last_output, masked_th_last_output, atol=1e-04)
        assert_allclose(unrolled_masked_th_outputs, masked_th_outputs, atol=1e-04)
        assert_allclose(unrolled_masked_th_state, masked_th_state, atol=1e-04)