Exemplo n.º 1
0
def build_model(mode=None, maxlen=None, output_dim=None):
    print('Build model...')

    def _scheduler(epoch):
        global counter
        counter += 1
        rate = learning_rates[counter]
        #model.lr.set_value(rate)
        print(model.optimizer.lr)
        #print(counter, rate)
        return model.optimizer.lr

    change_lr = LRS(_scheduler)
    model = Sequential()
    model.add(LSTM(128 * 15, return_sequences=False,
                   input_shape=(maxlen, 512)))
    model.add(Dropout(0.5))
    model.add(Dense(output_dim))
    model.add(Activation('softmax'))
    if mode == "rms":
        optimizer = RMSprop(lr=0.01)
    if mode == "adam":
        optimizer = Adam()
    model.compile(loss='categorical_crossentropy', optimizer=optimizer)
    return model, change_lr
Exemplo n.º 2
0
def set_tr_params(args):

    #### OPTIMIZER
    if (args.optim == "sgd"):
        print("Using SGD")
        opt = SGD(lr=args.lr, decay=1e-6, momentum=0.9)
    elif (args.optim == "adam"):
        print("Using Adam")
        opt = Adam(lr=args.lr,
                   beta_1=0.9,
                   beta_2=0.999,
                   epsilon=None,
                   decay=0.0,
                   amsgrad=False)
    elif (args.optim == "rmsprop"):
        print("Using RMSprop")
        opt = RMSprop(lr=args.lr, rho=0.9, epsilon=None, decay=0.0)

    ## LR Scheduller
    if (args.lra == True):
        e1 = int(args.epochs * 0.5)
        e2 = int(args.epochs * 0.75)
        print("Learning rate annealing epochs: 0-->", e1, "-->", e2, "-->",
              args.epochs)
        print("Learning rate annealing LR:", args.lr, "-->",
              args.lr / args.lra_scale, "-->",
              args.lr / (args.lra_scale * args.lra_scale))

        def scheduler(epoch):
            if epoch < e1:
                return args.lr
            elif epoch < e2:
                if (epoch == e1):
                    print("===============================")
                    print("New learning rate:", args.lr / args.lra_scale)
                    print("===============================")
                return args.lr / args.lra_scale
            else:
                if (epoch == e2):
                    print("===============================")
                    print("New learning rate:",
                          args.lr / (args.lra_scale * args.lra_scale))
                    print("===============================")
                return args.lr / (args.lra_scale * args.lra_scale)

        set_lr = LRS(scheduler)
        callbacks = [set_lr]
    else:
        print("Learning rate=", args.lr, "no annealing")
        callbacks = []

    ## Model checkpoint
    if (args.save_epochs):
        filepath = args.save_model + "_{epoch:03d}.h5"
        checkpoint = ModelCheckpoint(filepath, verbose=1, save_best_only=False)
        callbacks.append(checkpoint)

    return opt, callbacks
opt = SGD(lr=0.1, decay=1e-6)

modelFinal.compile(loss='categorical_crossentropy',
                   optimizer=Adam(lr=0.001),
                   metrics=['accuracy'])


# DEFINE A LEARNING RATE SCHEDULER
def scheduler(epoch):
    if epoch < 25:
        return .001
    elif epoch < 50:
        return 0.0001
    else:
        return 0.00001


set_lr = LRS(scheduler)

## TRAINING

history = modelFinal.fit_generator(
    datagen.flow(x_train, y_train, batch_size=batch_size),
    steps_per_epoch=len(x_train) / batch_size,
    epochs=epochs,
    validation_data=testdatagen.flow(
        x_test, y_test),  # uncomment this for simpler data aug
    validation_steps=len(x_test) /
    batch_size,  # uncomment this for simpler data aug
    #validation_data=(x_test, y_test), # comment this for simpler data aug
    callbacks=[set_lr])
def define_model(x):
    global st
    global modname
    global model
    global a
    st += 1
    
    n_conv = int(x[0])
    nla = int(x[1])
    np =  int(x[2])
    np1 = int(x[3])
    np2 = int(x[4])
    drop = x[5]
    a = x[6]
    
    def decay(ep):
        global a
        lr = a/((ep)+1)#simple 1 param 1/(t) decay
        return lr
    lr = LRS(decay)
    
    #input layers
    pin = Input(shape=(num_wave,num_ang))
    din = Input(shape=(num_wave,num_ang))
    
    #variable number of convolutional layers
    #independent layers for psi and delta
    convrp = Conv1D(64,4,activation='relu',padding='same')(pin)
    convrp = MaxPooling1D(pool_size = 2)(convrp)
    for i in range(n_conv):
        convrp = Conv1D(64,4,activation='relu')(convrp)
        convrp = MaxPooling1D(pool_size = 2)(convrp)
    convrp = MaxPooling1D(pool_size = 2)(convrp)
    r = Flatten()(convrp)

    convrs = Conv1D(64,4,activation='relu',padding='same')(din)
    convrs = MaxPooling1D(pool_size = 2)(convrs)
    for i in range(n_conv):
        convrs = Conv1D(64,4,activation='relu')(convrs)
        convrs = MaxPooling1D(pool_size = 2)(convrs)
    convrs = MaxPooling1D(pool_size = 2)(convrs)
    t = Flatten()(convrs)

    #pass the convolutoinal layers through dense layers, still indepent by spectra type
    r = Dense(np,activation='relu')(r)
    r = Dropout(drop)(r)
    t = Dense(np,activation='relu')(t)
    t = Dropout(drop)(t)

    #combine the two spectral types
    a = Add()([r,t])
    #pass the data through more dense layers
    a = Dense(np1,activation='relu')(a)
    a = Dropout(drop)(a)
    for i in range(nla):
        a = Dense(np1,activation='relu')(a)
        a = Dropout(drop)(a)
    
    #indepent layers for individual spectra in linear array format
    rp = Dense(600,activation='relu')(a)
    rs = Dense(600,activation='relu')(a)
    tp = Dense(600,activation='relu')(a)
    ts = Dense(600,activation='relu')(a)
    #output nodes
    rp = Dense(600,activation=None)(rp)
    rs = Dense(600,activation=None)(rs)
    tp = Dense(600,activation=None)(tp)
    ts = Dense(600,activation=None)(ts)


    #define the model
    model = Model([pin,din],[rp,rs,tp,ts])
    # compile the model using the adam optimizer and appropriate loss functions
    #the loss weights can be used to tune the relative importance of output data . 
    #I find that increasing the loss weight for the thickness layer tends to improve fitting,
    #since there loss fuctions are different for materials and thicknesses
    model.compile(optimizer='adam',loss=['mse','mse','mse','mse'],metrics = ['mse'],loss_weights=[2,1,1,1])
    model.summary()

    #model name can be anything you want
    modname = dr+'general_5lay4matinverse_model_v-tma_convolution_pd2rt_'+str(st)+'step_'+date.strftime("%Y")+date.strftime("%m")+date.strftime("%d")
    #print the model summary to file for records, the modelname in log also helps with identificaiton of the log files
    print('-'*57)
    print(modname)
    print('-'*57)
    with open(modname+'_summary.txt', 'w') as f:
        with redirect_stdout(f):
            model.summary()
Exemplo n.º 5
0
def define_model(x):
    global st
    global modname
    global model
    global a
    st += 1
    
    n_conv = int(x[0])
    nla = int(x[1])
    np =  int(x[2])
    np1 = int(x[3])
    np2 = int(x[4])
    drop = x[5]
    a = x[6]
    
    def decay(ep):
        global a
        lr = a/((ep)+1)#simple 1 param 1/(t) decay
        return lr
    lr = LRS(decay)
    
    #input layers
    rpin = Input((200,3))
    rsin = Input((200,3))
    tpin = Input((200,3))
    tsin = Input((200,3))
    
    #variable number of convolutional layers
    #independent layers for psi and delta
    convrp = Conv1D(64,4,activation='relu',padding='same')(rpin)
    convrp = MaxPooling1D(pool_size = 2)(convrp)
    for i in range(n_conv):
        convrp = Conv1D(64,4,activation='relu')(convrp)
        convrp = MaxPooling1D(pool_size = 2)(convrp)
    convrp = MaxPooling1D(pool_size = 2)(convrp)
    frp = Flatten()(convrp)

    convrs = Conv1D(64,4,activation='relu',padding='same')(rsin)
    convrs = MaxPooling1D(pool_size = 2)(convrs)
    for i in range(n_conv):
        convrs = Conv1D(64,4,activation='relu')(convrs)
        convrs = MaxPooling1D(pool_size = 2)(convrs)
    convrs = MaxPooling1D(pool_size = 2)(convrs)
    frs = Flatten()(convrs)

    convtp = Conv1D(64,4,activation='relu',padding='same')(tpin)
    convtp = MaxPooling1D(pool_size = 2)(convtp)
    for i in range(n_conv):
        convtp = Conv1D(64,4,activation='relu')(convtp)
        convtp = MaxPooling1D(pool_size = 2)(convtp)
    convtp = MaxPooling1D(pool_size = 2)(convtp)
    ftp = Flatten()(convtp)

    convts = Conv1D(64,4,activation='relu',padding='same')(tsin)
    convts = MaxPooling1D(pool_size = 2)(convts)
    for i in range(n_conv):
        convts = Conv1D(64,4,activation='relu')(convts)
        convts = MaxPooling1D(pool_size = 2)(convts)
    convts = MaxPooling1D(pool_size = 2)(convts)
    fts = Flatten()(convts)

    #add the two polarization states together in some dense layers
    #pass the convolutoinal layers through dense layers, still indepent by spectra type
    r = Add()([frp,frs])
    t = Add()([ftp,fts])
    r = Dense(np,activation='relu')(r)
    r = Dropout(drop)(r)
    t = Dense(np,activation='relu')(t)
    t = Dropout(drop)(t)

    #combine the two spectral types
    a = Add()([r,t])
    #pass the data through more dense layers
    a = Dense(np1,activation='relu')(a)
    a = Dropout(drop)(a)
    for i in range(nla):
        a = Dense(np1,activation='relu')(a)
        a = Dropout(drop)(a)
    
    #indepent layers for the materials and thickness funneling the data to small number of output nodes
    m = Dense(np2,activation='relu')(a)
    t = Dense(np2,activation='relu')(a)
    m = Dense(200,activation='relu')(m)
    t = Dense(200,activation='relu')(t)
    m = Dense(100,activation='relu')(m)
    t = Dense(50,activation='relu')(t)


    #output nodes
    #thickness is a number in so there is no activation
    thout = Dense(2,activation=None)(t)
    #materials guesses a probability array for each material
    #real material is always a normalized array with 1 at the material index i.e. [0 1 0 0 0]
    mout1 = Dense(5,activation='softmax')(m)
    mout2 = Dense(5,activation='softmax')(m)

    #define the model
    model = Model([rpin,rsin,tpin,tsin],[thout,mout1,mout2])
Exemplo n.º 6
0
lr= 0.001
decay= lr/n_epoch
game = Game(game_size, zit_score_to_win)

from keras.callbacks import LearningRateScheduler as LRS
import keras.backend as K


def scheduler(epoch):
    if epoch% 3 == 0 and epoch != 0:
        lr = K.get_value(zit_model.optimizer.lr)
        K.set_value(zit_model.optimizer.lr, lr*0.1)
        print('lr change to {}'.format(lr*0.1))
    return K.get_value(zit_model.optimizer.lr)

reduce_lr = LRS(scheduler)


def generate_array_from_file(data_path):
    global count
    while 1:
        load_path = os.path.join(data_path, 'new_cnn_dataset_'+str(count)+'.npz')

        train_data = np.load(load_path)['arr_0']
        train_label = np.load(load_path)['arr_1']

        count = count+1
        if count >= ite:
            count = 0
        train_data = train_data.reshape((train_data.shape[0],4,4,12))
        yield (train_data, train_label)
Exemplo n.º 7
0
#print(x_train.max())

# x_train = x_train[:, 38:]
# x_val = x_val[:, 38:]

print("x train shape")
print(x_train.shape)

x_train = x_train.reshape(x_train.shape[0], 90)
x_val = x_val.reshape(x_val.shape[0], 90)

x_train = x_train.astype('float32')
x_val = x_val.astype('float32')

# learning schedule callback
lrate = LRS(step_decay)
callbacks_list = [lrate]

#callbacks = [TensorBoard(log_dir="logs/classifier/{}".format(time()), write_graph=True)]

model = cmodel()
history = model.fit(x_train,
                    y_train,
                    batch_size=batch_size,
                    epochs=epochs,
                    validation_data=(x_val, y_val),
                    shuffle=True,
                    callbacks=callbacks_list)

scores = model.evaluate(x_val, y_val, verbose=1)
print('Test loss:', scores[0])
Exemplo n.º 8
0
    if (delta.min() < 0.):
        resc = delta + np.pi
    resc = np.rad2deg(resc) / 360.
    return resc


# learning rate decay function
def decay(ep):
    'learning rate decay function, may include others in future'
    a = .0025
    lr = a / ((ep) + 1)
    return lr


# can use this guy below as a callback when doing Model.fit
lr = LRS(decay)


#function to read in the data
@jit(nopython=True)
def read_dat(fname, dataset, nlay, nang, nwvl):
    '''
    function to read in the training data within an .h5 file and rescale
    NOTE: saves rescale of delta and psi for 'rs_dat'
    currently used for ENZ proj with data for angle, thicknesses, rp, rs, tp, ts, psi, delta
    NOTE: data should be a [N,T] array, w/ N for num of runs and T = nang + nlay + 6*nang*nwvl
    inputs:
    fname - string - file name containing the training data, pls use full file name
    dataset - string - name of the dataset in the .h5 file
    NOTE: currently doesn't support reading in data from more than 1 dataset
    nlay - integer - number of layers in the multistack
Exemplo n.º 9
0
def define_model(x):
    global st
    global modname
    global model
    global a
    st += 1
    
    n_conv = int(x[0])
    nla = int(x[1])
    np =  int(x[2])
    np1 = int(x[3])
    np2 = int(x[4])
    drop = x[5]
    a = x[6]
    
    def decay(ep):
        global a
        lr = a/((ep)+1)#simple 1 param 1/(t) decay
        return lr
    lr = LRS(decay)
    
    #input layers
    rpin = Input((200,3))
    rsin = Input((200,3))
    tpin = Input((200,3))
    tsin = Input((200,3))
    
    #variable number of convolutional layers
    #independent layers for psi and delta
    convrp = Conv1D(64,4,activation='relu',padding='same')(rpin)
    convrp = MaxPooling1D(pool_size = 2)(convrp)
    for i in range(n_conv):
        convrp = Conv1D(64,4,activation='relu')(convrp)
        convrp = MaxPooling1D(pool_size = 2)(convrp)
    convrp = MaxPooling1D(pool_size = 2)(convrp)
    frp = Flatten()(convrp)

    convrs = Conv1D(64,4,activation='relu',padding='same')(rsin)
    convrs = MaxPooling1D(pool_size = 2)(convrs)
    for i in range(n_conv):
        convrs = Conv1D(64,4,activation='relu')(convrs)
        convrs = MaxPooling1D(pool_size = 2)(convrs)
    convrs = MaxPooling1D(pool_size = 2)(convrs)
    frs = Flatten()(convrs)

    convtp = Conv1D(64,4,activation='relu',padding='same')(tpin)
    convtp = MaxPooling1D(pool_size = 2)(convtp)
    for i in range(n_conv):
        convtp = Conv1D(64,4,activation='relu')(convtp)
        convtp = MaxPooling1D(pool_size = 2)(convtp)
    convtp = MaxPooling1D(pool_size = 2)(convtp)
    ftp = Flatten()(convtp)

    convts = Conv1D(64,4,activation='relu',padding='same')(tsin)
    convts = MaxPooling1D(pool_size = 2)(convts)
    for i in range(n_conv):
        convts = Conv1D(64,4,activation='relu')(convts)
        convts = MaxPooling1D(pool_size = 2)(convts)
    convts = MaxPooling1D(pool_size = 2)(convts)
    fts = Flatten()(convts)

    #add the two polarization states together in some dense layers
    #pass the convolutoinal layers through dense layers, still indepent by spectra type
    r = Add()([frp,frs])
    t = Add()([ftp,fts])
    r = Dense(np,activation='relu')(r)
    r = Dropout(drop)(r)
    t = Dense(np,activation='relu')(t)
    t = Dropout(drop)(t)

    #combine the two spectral types
    a = Add()([r,t])
    #pass the data through more dense layers
    a = Dense(np1,activation='relu')(a)
    a = Dropout(drop)(a)
    for i in range(nla):
        a = Dense(np1,activation='relu')(a)
        a = Dropout(drop)(a)
    
    #indepent layers for the materials and thickness funneling the data to small number of output nodes
    m = Dense(np2,activation='relu')(a)
    t = Dense(np2,activation='relu')(a)
    m = Dense(200,activation='relu')(m)
    t = Dense(200,activation='relu')(t)
    m = Dense(100,activation='relu')(m)
    t = Dense(50,activation='relu')(t)


    #output nodes
    #thickness is a number in so there is no activation
    thout = Dense(1,activation=None)(t)
    #materials guesses a probability array for each material
    #real material is always a normalized array with 1 at the material index i.e. [0 1 0 0 0]
    mout1 = Dense(5,activation='softmax')(m)

    #define the model
    model = Model([rpin,rsin,tpin,tsin],[thout,mout1])
    # compile the model using the adam optimizer and appropriate loss functions
    #the loss weights can be used to tune the relative importance of output data . 
    #I find that increasing the loss weight for the thickness layer tends to improve fitting,
    #since there loss fuctions are different for materials and thicknesses
    model.compile(optimizer='adam',loss=['mse','categorical_crossentropy'],metrics = ['mse','accuracy'],loss_weights=[2,1])
    model.summary()

    #model name can be anything you want
    modname = dr+'general_1lay4matinverse_model_v-tma_convolution_rprstpts_'+str(st)+'step_'+date.strftime("%Y")+date.strftime("%m")+date.strftime("%d")
    #print the model summary to file for records, the modelname in log also helps with identificaiton of the log files
    print('-'*57)
    print(modname)
    print('-'*57)
    with open(modname+'_summary.txt', 'w') as f:
        with redirect_stdout(f):
            model.summary()