Exemplo n.º 1
0
def main():
    args = get_args()
    input_path = args.input
    batch_size = args.batch_size
    nb_epochs = args.nb_epochs
    depth = args.depth
    k = args.width
    validation_split = args.validation_split
    use_augmentation = args.aug

    logging.debug("Loading data...")
    image, gender, age, _, image_size, _ = load_data(input_path)
    X_data = image
    y_data_a = np_utils.to_categorical(age, 101)

    #custom parameters
    nb_class = 2
    hidden_dim = 512

    vgg_model = VGGFace(include_top=False, input_shape=(224, 224, 3))
    last_layer = vgg_model.get_layer('pool5').output
    x = Flatten(name='flatten')(last_layer)
    x = Dense(hidden_dim, activation='relu', name='fc6')(x)
    x = Dense(hidden_dim, activation='relu', name='fc7')(x)
    out = Dense(nb_class, activation='softmax', name='fc8')(x)
    model = Model(vgg_model.input, out)
    sgd = SGD(lr=0.1, momentum=0.9, nesterov=True)
    model.compile(optimizer=sgd,
                  loss=["categorical_crossentropy"],
                  metrics=['accuracy'])

    logging.debug("Model summary...")
    model.count_params()
    model.summary()

    logging.debug("Saving model...")
    mk_dir("models")
    with open(os.path.join("models", "vgg_{}_{}.json".format(depth, k)),
              "w") as f:
        f.write(model.to_json())

    mk_dir("checkpoints")
    callbacks = [
        LearningRateScheduler(schedule=Schedule(nb_epochs)),
        ModelCheckpoint("checkpoints/weights.{epoch:02d}-{val_loss:.2f}.hdf5",
                        monitor="val_loss",
                        verbose=1,
                        save_best_only=True,
                        mode="auto")
    ]

    logging.debug("Running training...")

    data_num = len(X_data)
    indexes = np.arange(data_num)
    np.random.shuffle(indexes)
    X_data = X_data[indexes]
    y_data_g = y_data_g[indexes]
    y_data_a = y_data_a[indexes]
    train_num = int(data_num * (1 - validation_split))
    X_train = X_data[:train_num]
    X_test = X_data[train_num:]
    y_train_g = y_data_g[:train_num]
    y_test_g = y_data_g[train_num:]
    y_train_a = y_data_a[:train_num]
    y_test_a = y_data_a[train_num:]

    if use_augmentation:
        datagen = ImageDataGenerator(width_shift_range=0.1,
                                     height_shift_range=0.1,
                                     horizontal_flip=True,
                                     preprocessing_function=get_random_eraser(
                                         v_l=0, v_h=255))
        training_generator = MixupGenerator(X_train, [y_train_g, y_train_a],
                                            batch_size=batch_size,
                                            alpha=0.2,
                                            datagen=datagen)()
        hist = model.fit_generator(generator=training_generator,
                                   steps_per_epoch=train_num // batch_size,
                                   validation_data=(X_test,
                                                    [y_test_g, y_test_a]),
                                   epochs=nb_epochs,
                                   verbose=1,
                                   callbacks=callbacks)
    else:
        hist = model.fit(X_train, [y_train_g, y_train_a],
                         batch_size=batch_size,
                         epochs=nb_epochs,
                         callbacks=callbacks,
                         validation_data=(X_test, [y_test_g, y_test_a]))

    logging.debug("Saving weights...")
    model.save_weights(os.path.join("models", "vgg_{}_{}.h5".format(depth, k)),
                       overwrite=True)
    pd.DataFrame(hist.history).to_hdf(
        os.path.join("models", "history_{}_{}.h5".format(depth, k)), "history")
Exemplo n.º 2
0
    input_shape = (32, 32, 3)

if __name__ == "__main__":
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()
    x_train, x_test = normalize(x_train, x_test)

    y_train = keras.utils.to_categorical(y_train, num_classes=10)
    y_test = keras.utils.to_categorical(y_test, num_classes=10)

    # MUNET model
    inputs = Input(input_shape)

    prediction = MUNET(inputs)
    model_star = Model(inputs=[inputs], outputs=[prediction])
    model_star.summary()
    params = model_star.count_params()
    params /= 1E6
    print()
    print("Number of params of model: %f M" % (params))

    # optimization details
    sgd = optimizers.SGD(lr=lrf, decay=lr_decay, momentum=0.9, nesterov=True)
    model_star.compile(loss='categorical_crossentropy',
                       optimizer=sgd,
                       metrics=['accuracy'])

    # data augmentation
    datagen = ImageDataGenerator(
        width_shift_range=4. /
        32,  # randomly shift images horizontally (fraction of total width)
        height_shift_range=4. /