Exemplo n.º 1
0
    def __init__(self,**kwargs):
        self.kwargs = kwargs
        self.name = kwargs['name']
        self.filters = kwargs['filters']
        self.kernel = kwargs['kernel_size']
        self.activation = 'linear'
        if 'activation' in kwargs:
            self.activation = kwargs['activation']
            kwargs['activation'] = 'linear'
        if isinstance(self.kernel, int):
            ks = self.kernel
            self.kernel = (ks, ks, ks)
        ks = self.kernel
        kwargs['kernel_size'] = (1, ks[1], ks[2])
        kwargs['name'] = self.name + '_x_axis'
        kwargs['data_format'] = 'channels_first'
        self.convx = KL.Convolution3D(**kwargs)
        kwargs['kernel_size'] = (ks[0], 1, ks[2])
        kwargs['name'] = self.name + '_y_axis'
        kwargs['data_format'] = 'channels_first'

        self.convy = KL.Convolution3D(**kwargs)
        kwargs['kernel_size'] = (ks[0], ks[1], 1)
        kwargs['name'] = self.name + '_z_axis'
        kwargs['data_format'] = 'channels_first'

        self.convz = KL.Convolution3D(**kwargs)
        self.addLayer = KL.Add(name=self.name + '_add')
Exemplo n.º 2
0
    def _build_model(self):
        inputs = layers.Input(shape=(3, self.sequence_size, self.img_size, self.img_size))
        x = layers.Convolution3D(16, 3, 3, 3, activation=Relu, border_mode="same")(inputs)
        x = layers.Convolution3D(1, 3, 3, 3, activation=Relu, border_mode="same")(x)
        x = layers.Reshape([self.sequence_size,321,321])(x)
        x = layers.Convolution2D(64, 3, 3, activation=Relu, border_mode="same")(x)
        x = layers.MaxPooling2D((2, 2))(x)
        x = layers.Convolution2D(32, 3, 3, activation=Relu, border_mode="same")(x)
        x = layers.Convolution2D(32, 3, 3, activation=Relu)(x)
        x = layers.Convolution2D(4, 3, 3, activation=Relu, border_mode="same")(x)
        x = layers.Convolution2D(1, 3, 3, activation='sigmoid', border_mode="same")(x)
        model = Model(input=inputs, output=x)

        return model
Exemplo n.º 3
0
def make_model():
    model = models.Sequential()
    model.add(
        layers.Convolution3D(16,
                             1,
                             3,
                             3,
                             input_shape=(1, 24, 128, 128),
                             activation='relu'))
    model.add(layers.Convolution3D(32, 1, 3, 3, activation='relu'))
    model.add(layers.MaxPooling3D(pool_size=(1, 2, 2)))
    model.add(layers.Convolution3D(32, 1, 3, 3, activation='relu'))
    model.add(layers.Convolution3D(64, 1, 3, 3, activation='relu'))
    model.add(layers.MaxPooling3D(pool_size=(1, 2, 2)))
    model.add(layers.Convolution3D(64, 1, 3, 3, activation='relu'))
    model.add(layers.Convolution3D(128, 1, 3, 3, activation='relu'))
    model.add(layers.MaxPooling3D(pool_size=(1, 2, 2)))
    model.add(layers.Convolution3D(128, 1, 3, 3, activation='relu'))
    model.add(layers.MaxPooling3D(pool_size=(1, 2, 2)))
    model.add(layers.Flatten())
    model.add(layers.Dense(512, activation='relu'))
    model.add(layers.Dropout(0.5))
    model.add(layers.Dense(2, activation='softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer='adadelta',
                  metrics=['accuracy'])
    model.fit(trn_x,
              trn_y,
              batch_size=24,
              nb_epoch=10,
              verbose=1,
              validation_data=(val_x, val_y))
Exemplo n.º 4
0
 def build_model(self):
     inputs = layers.Input(shape=(3, self.sequence_size, self.img_size,
                                  self.img_size))
     x = layers.Convolution3D(16,
                              3,
                              3,
                              3,
                              activation=Relu,
                              border_mode="same")(inputs)
     x = layers.Convolution3D(1,
                              3,
                              3,
                              3,
                              activation=Relu,
                              border_mode="same")(x)
     print(x.get_shape())
     x = layers.Reshape([self.sequence_size, 321, 321])(x)
     print(x.get_shape())
     x = layers.Convolution2D(64, 3, 3, activation=Relu,
                              border_mode="same")(x)
     x = layers.MaxPooling2D((2, 2))(x)
     print(x.get_shape())
     x = layers.Convolution2D(32, 3, 3, activation=Relu,
                              border_mode="same")(x)
     x = layers.Convolution2D(32, 3, 3, activation=Relu)(x)
     x = layers.Convolution2D(4, 3, 3, activation=Relu,
                              border_mode="same")(x)
     x = layers.Convolution2D(1,
                              3,
                              3,
                              activation='sigmoid',
                              border_mode="same")(x)
     print(x.get_shape())
     model = Model(input=inputs, output=x)
     model.compile(optimizer='rmsprop',
                   loss=self.loss_DSSIS_tf11,
                   metrics=['accuracy'])
     return model