Exemplo n.º 1
0
def paths_and_labels_to_dataset(file_paths, labels, label_mode, num_classes,
                                max_length):
    """Constructs a dataset of text strings and labels."""
    path_ds = tf.data.Dataset.from_tensor_slices(file_paths)
    string_ds = path_ds.map(lambda x: path_to_string_content(x, max_length))
    if label_mode:
        label_ds = dataset_utils.labels_to_dataset(labels, label_mode,
                                                   num_classes)
        string_ds = tf.data.Dataset.zip((string_ds, label_ds))
    return string_ds
Exemplo n.º 2
0
def paths_and_labels_to_dataset(image_paths, image_size, num_channels, labels,
                                label_mode, num_classes, interpolation):
    """Constructs a dataset of images and labels."""
    # TODO(fchollet): consider making num_parallel_calls settable
    path_ds = tf.data.Dataset.from_tensor_slices(image_paths)
    img_ds = path_ds.map(
        lambda x: path_to_image(x, image_size, num_channels, interpolation))
    if label_mode:
        label_ds = dataset_utils.labels_to_dataset(labels, label_mode,
                                                   num_classes)
        img_ds = tf.data.Dataset.zip((img_ds, label_ds))
    return img_ds
Exemplo n.º 3
0
def paths_and_labels_to_dataset(image_paths,
                                image_size,
                                num_channels,
                                labels,
                                label_mode,
                                num_classes,
                                interpolation,
                                crop_to_aspect_ratio=False):
  """Constructs a dataset of images and labels."""
  # TODO(fchollet): consider making num_parallel_calls settable
  path_ds = tf.data.Dataset.from_tensor_slices(image_paths)
  args = (image_size, num_channels, interpolation, crop_to_aspect_ratio)
  img_ds = path_ds.map(
      lambda x: load_image(x, *args), num_parallel_calls=tf.data.AUTOTUNE)
  if label_mode:
    label_ds = dataset_utils.labels_to_dataset(labels, label_mode, num_classes)
    img_ds = tf.data.Dataset.zip((img_ds, label_ds))
  return img_ds