Exemplo n.º 1
0
 def __init__(self, spec):
     spec = self._decode_spec(spec)
     if spec and not isinstance(spec, dict):
         spec = {'name': spec}
     self.spec = ModelSpec.get(spec['name'], **spec)
     self.serving_timeout = 30
     self.serving_client = TensorflowServingClient('localhost', 9000)
Exemplo n.º 2
0
def test_augmented_image_data_generator_wrong_crop_original(
        test_catdog_dataset_path):
    model_spec = ModelSpec.get('test',
                               preprocess_func='mean_subtraction',
                               preprocess_args=[141., 130., 123.],
                               target_size=(224, 224, 3))

    with pytest.raises(ValueError) as exception:
        test_data_generator = AugmentedImageDataGenerator(
            preprocessing_function=model_spec.preprocess_input,
            data_augmentation={
                'crop_original': 'fail',
                'scale_sizes': [256]
            })
        datagen = test_data_generator.flow_from_directory(
            directory=test_catdog_dataset_path,
            batch_size=1,
            target_size=model_spec.target_size[:2],
            class_mode='categorical',
            shuffle=False)

        datagen.next()

    expected = 'crop_original mode entered not supported, only `center_crop` is being supported now'
    actual = str(exception).split('ValueError: ')[1]
    assert actual == expected
Exemplo n.º 3
0
def test_augmented_image_data_generator_wrong_arguments(
        test_catdog_dataset_path):
    model_spec = ModelSpec.get('test',
                               preprocess_func='mean_subtraction',
                               preprocess_args=[141., 130., 123.],
                               target_size=(224, 224, 3))

    with pytest.raises(ValueError) as exception:
        test_data_generator = AugmentedImageDataGenerator(
            preprocessing_function=model_spec.preprocess_input,
            data_augmentation={'error': 123})
        datagen = test_data_generator.flow_from_directory(
            directory=test_catdog_dataset_path,
            batch_size=1,
            target_size=model_spec.target_size[:2],
            class_mode='categorical',
            shuffle=False)

        datagen.next()

    expected = 'data_augmentation dictionary should contain `crop_original`, `scale_sizes` or `transforms` as keys'
    actual = str(exception).split('ValueError: ')[1]
    assert actual == expected

    model_spec = ModelSpec.get('test',
                               preprocess_func='mean_subtraction',
                               preprocess_args=[141., 130., 123.],
                               target_size=(224, 224, 3))

    with pytest.raises(ValueError) as exception:
        test_data_generator = AugmentedImageDataGenerator(
            preprocessing_function=model_spec.preprocess_input,
            data_augmentation=[1, 2, 3])
        datagen = test_data_generator.flow_from_directory(
            directory=test_catdog_dataset_path,
            batch_size=1,
            target_size=model_spec.target_size[:2],
            class_mode='categorical',
            shuffle=False)

        datagen.next()

    expected = '`data_augmentation` is a %s and it should be a dictionary' % type(
        [1, 2, 3])
    actual = str(exception).split('ValueError: ')[1]
    assert actual == expected
Exemplo n.º 4
0
def test_as_json_mobilenet_v1():
    spec = ModelSpec.get('mobilenet_v1')
    expected = {
        'name': 'mobilenet_v1',
        'model': 'keras_applications.mobilenet.MobileNet',
        'preprocess_args': None,
        'preprocess_func': 'between_plus_minus_1',
        'target_size': [224, 224, 3]
    }
    assert spec.as_json() == expected
def assert_model_serving(model_name, expected_scores, check_features=False):
    model_spec = ModelSpec.get(model_name)
    client = TensorflowServingClient('localhost', MODEL_SERVING_PORT)
    result = client.make_prediction(cat_image(model_spec), 'image')

    assert 'class_probabilities' in result
    assert len(result['class_probabilities']) == 1

    scores = result['class_probabilities'][0]
    np.testing.assert_array_almost_equal(np.array(scores),
                                         np.array(expected_scores).flatten())

    if check_features:
        assert 'image_features' in result
        assert result['image_features'].shape == (1, 1024)
Exemplo n.º 6
0
def test_augmented_image_data_generator_wrong_transforms(
        test_catdog_dataset_path):
    model_spec = ModelSpec.get('test',
                               preprocess_func='mean_subtraction',
                               preprocess_args=[141., 130., 123.],
                               target_size=(224, 224, 3))

    with pytest.raises(ValueError) as exception:
        test_data_generator = AugmentedImageDataGenerator(
            preprocessing_function=model_spec.preprocess_input,
            data_augmentation={
                'scale_sizes': [256],
                'transforms': ['failure']
            })
        datagen = test_data_generator.flow_from_directory(
            directory=test_catdog_dataset_path,
            batch_size=1,
            target_size=model_spec.target_size[:2],
            class_mode='categorical',
            shuffle=False)
        datagen.next()

    expected = 'Wrong transform: failure . Check documentation to see the supported ones'
    actual = str(exception).split('ValueError: ')[1]
    assert actual == expected

    with pytest.raises(ValueError) as exception:
        test_data_generator = AugmentedImageDataGenerator(
            preprocessing_function=model_spec.preprocess_input,
            data_augmentation={
                'scale_sizes': [256],
                'transforms': 'blah'
            })
        datagen = test_data_generator.flow_from_directory(
            directory=test_catdog_dataset_path,
            batch_size=1,
            target_size=model_spec.target_size[:2],
            class_mode='categorical',
            shuffle=False)

        datagen.next()

    expected = 'Incorrect format for `transforms`, a list of transforms is expected'
    actual = str(exception).split('ValueError: ')[1]
    assert actual == expected
Exemplo n.º 7
0
def test_returns_existing_with_overrides():
    spec = ModelSpec.get('mobilenet_v1',
                         model='keras_applications.mobilenet.MobileNet',
                         target_size=[512, 512, 3],
                         preprocess_func='mean_subtraction',
                         preprocess_args=[1, 2, 3])
    assert spec is not None
    assert spec.model == MobileNet
    assert spec.target_size == [512, 512, 3]
    assert spec.preprocess_func == 'mean_subtraction'
    assert spec.preprocess_args == [1, 2, 3]
    assert spec.preprocess_input is not None
    assert spec.keras_kwargs == {
        'backend': keras.backend,
        'layers': keras.layers,
        'models': keras.models,
        'utils': keras.utils
    }
Exemplo n.º 8
0
def test_has_all_base_specs():
    assert_lists_same_items(model_spec.BASE_SPEC_NAMES,
                            model_spec.BASE_SPECS.keys())

    for name in model_spec.BASE_SPEC_NAMES:
        spec = ModelSpec.get(name)
        assert spec is not None
        assert spec.name == name
        assert spec.model is not None
        assert spec.target_size is not None
        assert spec.preprocess_func is not None
        assert spec.preprocess_input is not None
        assert spec.keras_kwargs == {
            'backend': keras.backend,
            'layers': keras.layers,
            'models': keras.models,
            'utils': keras.utils
        }
Exemplo n.º 9
0
def test_augmented_image_data_generator_wrong_scale_size(
        test_catdog_dataset_path):
    model_spec = ModelSpec.get('test',
                               preprocess_func='mean_subtraction',
                               preprocess_args=[141., 130., 123.],
                               target_size=(224, 224, 3))
    with pytest.raises(ValueError) as exception:
        test_data_generator = AugmentedImageDataGenerator(
            preprocessing_function=model_spec.preprocess_input,
            data_augmentation={'scale_sizes': 'asd'})
        test_data_generator.flow_from_directory(
            directory=test_catdog_dataset_path,
            batch_size=1,
            target_size=model_spec.target_size[:2],
            class_mode='categorical',
            shuffle=False)
    expected = 'Incorrect format for `scale_sizes`, list of ints or `= default` is expected'
    actual = str(exception).split('ValueError: ')[1]
    assert actual == expected
def setup_model(name, model_path):
    tf_model_dir = '.cache/model'

    model_spec = ModelSpec.get(name)
    model = model_spec.klass(weights='imagenet',
                             input_shape=tuple(model_spec.target_size))
    model_dir = os.path.dirname(model_path)
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    model.save(model_path)

    image_data = cat_image(model_spec)
    expected_scores = model.predict(image_data)

    if os.path.exists(tf_model_dir):
        shutil.rmtree(tf_model_dir)
    tf_model_dir_dir = os.path.dirname(tf_model_dir)
    if not os.path.exists(tf_model_dir_dir):
        os.makedirs(tf_model_dir_dir)

    return tf_model_dir, expected_scores
Exemplo n.º 11
0
def get_model_spec(base_spec_name, **overrides):
    return ModelSpec.get(base_spec_name, **overrides)
Exemplo n.º 12
0
def test_augmented_image_data_generator(test_catdog_dataset_path):
    model_spec = ModelSpec.get('test',
                               preprocess_func='mean_subtraction',
                               preprocess_args=[141., 130., 123.],
                               target_size=(224, 224, 3))
    test_data_generator = AugmentedImageDataGenerator(
        preprocessing_function=model_spec.preprocess_input,
        data_augmentation={
            'scale_sizes': 'default',
            'transforms': ['horizontal_flip']
        })

    datagen = test_data_generator.flow_from_directory(
        directory=test_catdog_dataset_path,
        batch_size=1,
        target_size=model_spec.target_size[:2],
        class_mode='categorical',
        shuffle=False)

    batch_x, batch_y = datagen.next()
    assert batch_x.shape == (1, 144, 224, 224, 3)
    assert len(batch_y) == 144

    test_data_generator = AugmentedImageDataGenerator(
        preprocessing_function=model_spec.preprocess_input,
        data_augmentation={
            'scale_sizes': [256],
            'transforms': [
                'horizontal_flip', 'vertical_flip', 'rotate_90', 'rotate_180',
                'rotate_270'
            ]
        })

    datagen = test_data_generator.flow_from_directory(
        directory=test_catdog_dataset_path,
        batch_size=1,
        target_size=model_spec.target_size[:2],
        class_mode='categorical',
        shuffle=False)

    batch_x, batch_y = datagen.next()
    assert batch_x.shape == (1, 108, 224, 224, 3)
    assert len(batch_y) == 108

    test_data_generator = AugmentedImageDataGenerator(
        preprocessing_function=model_spec.preprocess_input,
        data_augmentation={
            'transforms': [
                'horizontal_flip', 'vertical_flip', 'rotate_90', 'rotate_180',
                'rotate_270'
            ]
        })

    datagen = test_data_generator.flow_from_directory(
        directory=test_catdog_dataset_path,
        batch_size=1,
        target_size=model_spec.target_size[:2],
        class_mode='categorical',
        shuffle=False)

    batch_x, batch_y = datagen.next()
    assert batch_x.shape == (1, 6, 224, 224, 3)
    assert len(batch_y) == 6

    test_data_generator = AugmentedImageDataGenerator(
        preprocessing_function=model_spec.preprocess_input,
        data_augmentation={
            'scale_sizes': [256],
            'crop_original':
            'center_crop',
            'transforms': [
                'horizontal_flip', 'vertical_flip', 'rotate_90', 'rotate_180',
                'rotate_270'
            ]
        })

    datagen = test_data_generator.flow_from_directory(
        directory=test_catdog_dataset_path,
        batch_size=1,
        target_size=model_spec.target_size[:2],
        class_mode='categorical',
        shuffle=False)

    batch_x, batch_y = datagen.next()
    assert batch_x.shape == (1, 108, 224, 224, 3)
    assert len(batch_y) == 108
Exemplo n.º 13
0
def test_load_image_for_all_base_specs():
    for name in model_spec.BASE_SPEC_NAMES:
        spec = ModelSpec.get(name)
        image_data = spec.load_image('tests/files/cat.jpg')
        assert image_data.any()
Exemplo n.º 14
0
def test_returns_none_for_nonexistent_and_spec():
    spec = ModelSpec.get('nonexistent_v1')
    assert spec is None
Exemplo n.º 15
0
def model_spec_mobilenet():
    dataset_mean = [142.69182214, 119.05833338, 106.89884415]
    return ModelSpec.get('mobilenet_v1', preprocess_func='mean_subtraction', preprocess_args=dataset_mean)
def query_model(model_spec_name):
    model_spec = ModelSpec.get(model_spec_name)
    client = TensorflowServingClient('localhost',
                                     MODEL_SERVING_PORTS[model_spec_name])
    image = model_spec.load_image('tests/fixtures/files/cat.jpg')
    return client.make_prediction(image, 'image')