Exemplo n.º 1
0
    def train_model(self):
        from keras_video import VideoFrameGenerator
        from keras.preprocessing.image import ImageDataGenerator
        from keras_video.utils import show_sample
        classes = ['Real', 'Deepfake']
        classes.sort()

        size = (224, 224)
        channels = 3
        nbframe = 10
        bs = 2

        glob_pattern = 'Dataset_Face_Extracted_redo/{classname}/*.mp4'

        data_aug = ImageDataGenerator(zoom_range=.1,
                                      horizontal_flip=True,
                                      rotation_range=8,
                                      width_shift_range=.2,
                                      height_shift_range=.2)

        train_generator = VideoFrameGenerator(classes=classes,
                                              glob_pattern=glob_pattern,
                                              nb_frames=nbframe,
                                              split=.25,
                                              shuffle=True,
                                              batch_size=bs,
                                              target_shape=size,
                                              nb_channel=channels,
                                              transformation=data_aug,
                                              use_frame_cache=True)
        valid = train_generator.get_validation_generator()
        show_sample(train_generator)

        input_shape = (nbframe, ) + size + (channels, )
        model = self.timeModel(input_shape)
        model.compile(Adam(0.001), 'categorical_crossentropy', metrics=['acc'])

        epochs = 50
        callbacks = [
            ReduceLROnPlateau(verbose=1),
            ModelCheckpoint(
                filepath=os.path.join('dataLSTM', 'checkpoints', str(model) + \
                                      '.{epoch:03d}-{val_loss:.3f}.hdf5'),
                verbose=1, save_best_only=True
            )
        ]
        model.fit_generator(train_generator,
                            validation_data=valid,
                            verbose=1,
                            epochs=epochs,
                            callbacks=callbacks)
Exemplo n.º 2
0
    def create_train_dataset(self, model, prop_val_dataset = 0.33, do_data_aug = True, batch_size = 8, preprocess_input = None):
        """ Retrieve the train, validation and test datasets

        model: buildModel class
            A keras model created by buildModel class.

        prop_val_dataset: float, Optional
            A float value between 0 and 1 to split the training set into train and
        validation. Default value 0.33.

        do_data_aug: boolean, Optional
            Whether or not do data augmentation to the frames. Default value True.

        """

        _, time_step, *size, channels =  model.input_shape
        self.size = tuple(size)
        self.channels = channels
        self.time_step = time_step

        # for data augmentation
        if do_data_aug:
            data_aug = keras.preprocessing.image.ImageDataGenerator(
                preprocessing_function = preprocess_input,
                zoom_range=.1,
                horizontal_flip = True,
                rotation_range = 8,
                width_shift_range = .2,
                height_shift_range = .2)
        else:
            data_aug = None

        # Create video frame generator
        train_dataset = VideoFrameGenerator(
            classes = self.categories,
            glob_pattern = self.glob_pattern,
            nb_frames = self.time_step,
            split_val = prop_val_dataset,
            shuffle = True,
            batch_size = batch_size,
            target_shape = self.size,
            nb_channel = self.channels,
            transformation = data_aug,
            use_frame_cache = True)

        # Create
        validation_dataset = train_dataset.get_validation_generator()

        return train_dataset, validation_dataset
Exemplo n.º 3
0
def get_frames(filename):
  SIZE = (128, 128)
  CHANNELS = 3
  NBFRAME = 20
  data_aug = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255)
  test=VideoFrameGenerator(glob_pattern=filename,nb_frames=NBFRAME,shuffle=False, batch_size=1, 
                           target_shape=SIZE, transformation=data_aug, use_frame_cache=False)
  return test
Exemplo n.º 4
0
def create_video_frames_generator():
    glob_pattern = 'short_videos_2/*.avi'
    gen = VideoFrameGenerator(glob_pattern=glob_pattern,
                              nb_frames=NBFRAME,
                              target_shape=SIZE,
                              batch_size=BS,
                              nb_channel=CHANNELS,
                              use_frame_cache=True)
    return gen
Exemplo n.º 5
0
NBFRAME = 5
BS = 8
EPOCHS=50
CONVSHAPE=SIZE + (CHANNELS,)
INSHAPE=(NBFRAME,) + CONVSHAPE

#pattern to get videos and classes
glob_pattern = '../../data/facerec/{classname}/*.mp4'

#Create video frame generator
train = VideoFrameGenerator(
    classes=classes, 
    glob_pattern=glob_pattern,
    nb_frames=NBFRAME,
    split_val=.33, 
    shuffle=True,
    batch_size=BS,
    target_shape=SIZE,
    nb_channel=CHANNELS,
    use_frame_cache=False
)
valid = train.get_validation_generator()

from keras.layers import Conv2D, BatchNormalization, MaxPool2D, GlobalMaxPool2D
def build_convnet(shape=CONVSHAPE):
    momentum = .9
    model = keras.Sequential()
    model.add(Conv2D(64, (3,3), input_shape=shape, padding='same', activation='relu'))
    model.add(Conv2D(64, (3,3), padding='same', activation='relu'))
    model.add(BatchNormalization(momentum=momentum))
    
Exemplo n.º 6
0
                                        mode='auto')

# for data augmentation
data_augmentation = keras.preprocessing.image.ImageDataGenerator(
    zoom_range=.1,
    rotation_range=8,
    width_shift_range=.2,
    height_shift_range=.2)

# Create video frame generator
train_set = VideoFrameGenerator(classes=class_ids,
                                glob_pattern=video_path,
                                nb_frames=no_of_frames,
                                split_test=.4,
                                split_val=.2,
                                shuffle=True,
                                batch_size=batch_size_value,
                                target_shape=(img_width, img_height),
                                nb_channel=channels,
                                transformation=data_augmentation,
                                use_frame_cache=True)

validation_set = train_set.get_validation_generator()

test_set = train_set.get_test_generator()

history = model.fit_generator(train_set,
                              validation_data=validation_set,
                              verbose=1,
                              epochs=no_of_epochs,
                              callbacks=[checkpoint, early_stopping_criteria])