def apply_C_matches_sym():
    sigma = 1.
    N_X = 100
    X = np.random.randn(N_X, 2)

    kernel = lambda X, Y: gaussian_kernel(X, Y, sigma=sigma)
    temp = incomplete_cholesky(X, kernel, eta=0.1)
    I, R, nu = (temp["I"], temp["R"], temp["nu"])

    R_test = incomplete_cholesky_new_points(X, X, kernel, I, R, nu)

    v = np.random.randn(N_X.shape[0])
    lmbda = 1.

    x = gaussian_low_rank.apply_left_C(v, X, X, R.T, R_test.T, lmbda)
    y = develop_gaussian_low_rank.apply_left_C_sym(v, X, R.T, lmbda)
    assert_allclose(x, y)
def apply_C_matches_sym():
    sigma = 1.
    N_X = 100
    X = np.random.randn(N_X, 2)
    
    kernel = lambda X, Y: gaussian_kernel(X, Y, sigma=sigma)
    temp = incomplete_cholesky(X, kernel, eta=0.1)
    I, R, nu = (temp["I"], temp["R"], temp["nu"])
    
    R_test = incomplete_cholesky_new_points(X, X, kernel, I, R, nu)
    
    v = np.random.randn(N_X.shape[0])
    lmbda = 1.
    
    x = gaussian_low_rank.apply_left_C(v, X, X, R.T, R_test.T, lmbda)
    y = develop_gaussian_low_rank.apply_left_C_sym(v, X, R.T, lmbda)
    assert_allclose(x, y)
def test_apply_C_left_matches_full():
    sigma = 1.
    N = 100
    X = np.random.randn(N, 2)
    Y = np.random.randn(20, 2)
    low_rank_dim = int(len(X) * .9)
    kernel = lambda X, Y = None: gaussian_kernel(X, Y, sigma=sigma)
    K_XY = kernel(X, Y)
    K = kernel(X)
    
    temp = incomplete_cholesky(X, kernel, eta=low_rank_dim)
    I, R, nu = (temp["I"], temp["R"], temp["nu"])
    R_test = incomplete_cholesky_new_points(X, Y, kernel, I, R, nu)
    
    v = np.random.randn(X.shape[0])
    lmbda = 1.
    
    x = (gaussian.compute_C(X, Y, K_XY, sigma) + (K + np.eye(len(X))) * lmbda).dot(v)
    y = gaussian_low_rank.apply_left_C(v, X, Y, R.T, R_test.T, lmbda)
    assert_allclose(x, y, atol=1e-1)
def test_apply_C_left_matches_full():
    sigma = 1.
    N = 100
    X = np.random.randn(N, 2)
    Y = np.random.randn(20, 2)
    low_rank_dim = int(len(X) * .9)
    kernel = lambda X, Y=None: gaussian_kernel(X, Y, sigma=sigma)
    K_XY = kernel(X, Y)
    K = kernel(X)

    temp = incomplete_cholesky(X, kernel, eta=low_rank_dim)
    I, R, nu = (temp["I"], temp["R"], temp["nu"])
    R_test = incomplete_cholesky_new_points(X, Y, kernel, I, R, nu)

    v = np.random.randn(X.shape[0])
    lmbda = 1.

    x = (gaussian.compute_C(X, Y, K_XY, sigma) +
         (K + np.eye(len(X))) * lmbda).dot(v)
    y = gaussian_low_rank.apply_left_C(v, X, Y, R.T, R_test.T, lmbda)
    assert_allclose(x, y, atol=1e-1)