Exemplo n.º 1
0
def make_filename(dim):
    return kn.pack({
        'name': 'navigable_small_world',
        'ndims': '1',
        'dim0': str(dim),
        'ext': '.adj',
    })
Exemplo n.º 2
0
def reshape_kin_conflict(df):

    just_one_thread = df.groupby([
        'Stint',
        'Series',
        'Parent-Eliminated Kin ID Commonality',
    ]).first().reset_index()

    # move Parent-Eliminated Kin ID Commonality
    # into a hierarchically-nested column name
    res = just_one_thread.pivot(
        index=[
            'Stint',
            'Series',
        ],
        columns='Parent-Eliminated Kin ID Commonality',
    ).reset_index()

    # collapse hierarchically-nested columns into keyname-packed strings
    res.columns = res.columns.map(
        lambda x: kn.pack({
            'a': x[0],
            'Parent-Eliminated Kin ID Commonality': x[1],
        }) if x[1] != "" else x[0])

    return res
Exemplo n.º 3
0
def make_filename(dim):
    return kn.pack({
        'name': 'soft_random_geometric',
        'ndims': '1',
        'dim0': str(dim),
        'ext': '.adj',
    })
Exemplo n.º 4
0
def _extract_occurence_column(df, target, statistic):
    res = pd.concat([
        subset.value_counts(
            [
                'Series',
                'Stint',
                target,
            ],
            normalize=(statistic == 'Frequency'),
        ).reset_index(name=statistic, ).pivot(
            index=[
                'Stint',
                'Series',
            ],
            columns=target,
        ).reset_index() for __, subset in df.groupby([
            'Series',
            'Stint',
        ])
    ])
    # collapse hierarchically-nested columns into keyname-packed strings
    res.columns = res.columns.map(lambda x: kn.pack({
        target: x[1],
        'Statistic': statistic,
        'What': 'birth',
    }) if x[1] != "" else x[0])
    return res.fillna(0)  # zero-observation outcomes show up as na
Exemplo n.º 5
0
def make_filename(dim):
    return kn.pack({
        'name'  : 'complete',
        'ndims' : '1',
        'dim0'  : str(dim),
        'ext'   : '.adj',
    })
Exemplo n.º 6
0
def RenderAndSave(upd, filename):

    file = h5py.File(filename, 'r')
    nlev = int(file.attrs.get('NLEV'))

    death = np.array(file['Death']['upd_' + str(upd)])
    live = np.array(file['Live']['upd_' + str(upd)])

    image = np.array([
        [
            # dead
            (0.0, 0.0, 0.0) if not val_live else {
                0: (1.0, 1.0, 1.0),  # alive
                1: (0.0, 1.0, 0.0),  # apoptosis
                2: (1.0, 0.0, 0.0),  # bankrupt
                3: (0.0, 0.0, 1.0),  # replaced
            }[val_death] for val_death, val_live in zip(row_death, row_live)
        ] for row_death, row_live in zip(death, live)
    ])

    plt.figure(figsize=(18, 18))

    plt.imshow(image, extent=(0, image.shape[1], image.shape[0], 0))

    plt.axis('off')
    plt.grid(b=None)

    lines = LineCollection([((x, y), dest) for x in range(image.shape[0])
                            for y in range(image.shape[1])
                            for dest in ((x + 1, y), (x, y + 1))],
                           linestyle='solid',
                           colors='black')
    plt.gca().add_collection(lines)

    plt.savefig(kn.pack({
        'title':
        'death_viz',
        'update':
        str(upd),
        'seed':
        kn.unpack(filename)['seed'],
        'treat':
        kn.unpack(filename)['treat'],
        '_data_hathash_hash':
        fsh.FilesHash().hash_files([filename]),
        '_script_fullcat_hash':
        fsh.FilesHash(file_parcel="full_parcel",
                      files_join="cat_join").hash_files([sys.argv[0]]),
        '_source_hash':
        kn.unpack(filename)['_source_hash'],
        'ext':
        '.png'
    }),
                transparent=True,
                bbox_inches='tight',
                pad_inches=0)

    plt.clf()
    plt.close(plt.gcf())
Exemplo n.º 7
0
def draw_plots(measurement, df):

    facet(df).map(
        sns.barplot,
        'Threads',
        measurement,
        'Implementation',
        hue_order=sorted(df['Implementation'].unique()),
        palette=sns.color_palette(),
    ).add_legend()

    plt.savefig(
        kn.pack({
            'measurement': slugify(measurement),
            'time_type': ip.pophomogeneous(df['time_type']),
            'ext': '.png',
        }),
        transparent=True,
        dpi=300,
    )

    plt.clf()

    for showfliers in True, False:
        facet(df).map(
            sns.boxplot,
            'Threads',
            measurement,
            'Implementation',
            hue_order=sorted(df['Implementation'].unique()),
            palette=sns.color_palette(),
            showfliers=showfliers,
        ).add_legend()

        plt.savefig(
            kn.pack({
                'fliers': showfliers,
                'measurement': slugify(measurement),
                'time_type': ip.pophomogeneous(df['time_type']),
                'ext': '.png',
            }),
            transparent=True,
            dpi=300,
        )

        plt.clf()
Exemplo n.º 8
0
def draw_plots(measurement, df):

    facet(df).map(
        sns.barplot,
        'Num Cells',
        measurement,
        'Num Threads',
        hue_order=sorted(df['Num Threads'].unique()),
        palette=sns.color_palette(),
    ).add_legend().legend.set_title("Num Threads")

    plt.savefig(
        kn.pack({
            'measurement': slugify(measurement),
            'ext': '.png',
        }),
        transparent=True,
        dpi=300,
    )

    plt.clf()

    for showfliers in True, False:
        facet(df).map(
            sns.boxplot,
            'Num Cells',
            measurement,
            'Num Threads',
            hue_order=sorted(df['Num Threads'].unique()),
            palette=sns.color_palette(),
            showfliers=showfliers,
        ).add_legend().legend.set_title("Num Threads")

        plt.savefig(
            kn.pack({
                'fliers': showfliers,
                'measurement': slugify(measurement),
                'ext': '.png',
            }),
            transparent=True,
            dpi=300,
        )

        plt.clf()
Exemplo n.º 9
0
def RenderAndSave(upd, filename):

    file = h5py.File(filename, 'r')
    nlev = int(file.attrs.get('NLEV'))

    live = np.array(file['Live']['upd_' + str(upd)])
    pop = np.array(file['Population']['upd_' + str(upd)])
    triggers = np.array(file['Triggers']['upd_' + str(upd)])

    image = np.array([[(0.0, 0.0, 0.0) if not val_live else (1.0, 1.0, 1.0)
                       for val_live in row_live] for row_live in live])

    plt.figure(figsize=(18, 18))

    plt.imshow(image, extent=(0, image.shape[1], image.shape[0], 0))

    plt.axis('off')
    plt.grid(b=None)

    lines = LineCollection(
        [((x, y), dest) for x in range(image.shape[0])
         for y in range(image.shape[1]) for dest in ((x + 1, y), (x, y + 1))
         if (pop[y][x] != pop[dest[1] - 1][dest[0] - 1]
             or triggers[y][x] != triggers[dest[1] - 1][dest[0] - 1])],
        linestyle='solid',
        colors='red')
    plt.gca().add_collection(lines)

    plt.savefig(kn.pack({
        'title':
        'death_viz',
        'update':
        str(upd),
        'seed':
        kn.unpack(filename)['seed'],
        'treat':
        kn.unpack(filename)['treat'],
        '_data_hathash_hash':
        fsh.FilesHash().hash_files([filename]),
        '_script_fullcat_hash':
        fsh.FilesHash(file_parcel="full_parcel",
                      files_join="cat_join").hash_files([sys.argv[0]]),
        '_source_hash':
        kn.unpack(filename)['_source_hash'],
        'ext':
        '.png'
    }),
                transparent=True,
                bbox_inches='tight',
                pad_inches=0)

    plt.clf()
    plt.close(plt.gcf())
Exemplo n.º 10
0
def make_filename(dims):
    pack = {
        **{
            'name': 'toroidal_grid',
            'ndims': len(dims),
            'ext': '.adj',
        },
        **{'dim' + str(i): dim
           for i, dim in enumerate(dims)},
    }

    return kn.pack(pack)
Exemplo n.º 11
0
def plot_regression(df, x, y, extra_names={}):
    '''Plot a regression with annotated statistics.'''
    # ugly hack to include origin in plot bounds
    plt.clf()
    ax = _do_plot(df, x, y)
    xlim, ylim = ax.get_xlim(), ax.get_ylim()
    ax.cla()
    ax.set_xlim(*xlim)
    ax.set_ylim(*ylim)
    _do_plot(df, x, y, ax=ax)

    # calculate some regression statistics...
    info = [
        ("{} = " + ("{}" if isinstance(v, int) else "{:.2f}")).format(k, v)
        for k, v in it.chain(
            zip(
                [
                    'Slope',
                    'Intercept',
                    '$R^2$',
                    '$p$',
                    'Standard Error',
                ],
                stats.linregress(df[x], df[y]),
            ), [('$n$', len(df))])
    ]

    # ... and annotate regression statistics onto upper left
    at = AnchoredText(
        '\n'.join(info),
        frameon=True,
        loc='upper left',
    )
    ax.add_artist(at)

    # save to file
    # and assert df['Load'] is homogeneous
    plt.savefig(
        kn.pack({
            **{
                'x': slugify(x),
                'y': slugify(y),
                'synchronous': str(synchronous),
                'ext': '.png',
            },
            **extra_names
        }),
        transparent=True,
        dpi=300,
    )
Exemplo n.º 12
0
def make_output_filename():

    df = pd.DataFrame.from_records(
        [kn.unpack(source_filename) for source_filename in sys.argv[1:]], )

    out_attrs = {
        column: ib.dub(df[column])
        for column in df.columns if column not in {
            '_',
            'ext',
        }
    }

    out_filename = kn.pack({
        **out_attrs,
        **{
            'concat': str(len(sys.argv) - 1),
            'ext': '.csv',
        },
    })

    return out_filename
Exemplo n.º 13
0
def RenderAndSave(upd, filename):

    file = h5py.File(filename, 'r')
    nlev = int(file.attrs.get('NLEV'))

    channel = np.array(
        file['Channel']['lev_'+str(nlev-1)]['upd_'+str(upd)]
    ).flatten()
    regulators = [
        np.array(
            file['Regulators']['dir_'+str(dir)]['upd_'+str(upd)]
        ).flatten()
        for dir in range(4)
    ]
    live = np.array(file['Live']['upd_'+str(upd)])
    index = np.array(file['Index']['own'])

    data_0 = np.array(file['Channel']['lev_0']['upd_'+str(upd)])
    data_1 = (
        np.array(file['Channel']['lev_0']['upd_'+str(upd)])
        if nlev == 1 else
        np.array(file['Channel']['lev_1']['upd_'+str(upd)])
    )

    # get unique group IDs
    ids = { id for id in channel.flatten() }

    # for each group, get all regulators
    cmapper = {}
    for id in ids:
        tags_to_regs = []
        idxs = []
        for flat_idx, idx in enumerate(index.flatten()):
            if channel[flat_idx] == id:
                idxs.append(idx)
                if live.flatten()[flat_idx]:
                    archives = [ json.loads(
                        regulator[flat_idx].decode("utf-8")
                    )['value0'] for regulator in regulators ]
                    tags = {
                        d['key'] : d['value']['value0']['value0']
                        for d in archives[0]['tags']
                    }

                    regulatorsum = defaultdict(lambda: 0.0)
                    for archive in archives:
                        for d in archive['regulators']:
                            regulatorsum[d['key']] += d['value']

                    tags_to_regs.append({
                        tags[uid] : regulatorsum[uid] for uid in archives[0]['uids']
                    })


        df = pd.DataFrame.from_records(
            tags_to_regs
        ).fillna(1)

        if pcamapper[id] is not None:
            pca, cols, minv, ptpv = pcamapper[id]
            pc = pca.transform(df[cols].to_numpy())
            pc = (pc - minv) / ptpv

            for idx, row in zip(idxs, pc):
                cmapper[idx] = (
                    row[0] if row.size >= 1 and not np.isnan(row[0]) else 0.5,
                    row[1] if row.size >= 2 and not np.isnan(row[1]) else 0.5,
                    row[2] if row.size >= 3 and not np.isnan(row[2]) else 0.5,
                )
        else:
            for idx in idxs:
                cmapper[idx] = (0.5, 0.5, 0.5)

    image = np.array([
        [
            cmapper[val_index] if val_live else (0.0,0.0,0.0)
            for val_index, val_live in zip(row_index, row_live)
        ]
    for row_index, row_live in zip(index, live)])

    plt.figure(figsize=(18,18))

    plt.imshow(
        image,
        extent = (0, image.shape[1], image.shape[0], 0)
    )

    plt.axis('off')
    plt.grid(b=None)

    lines_0 = LineCollection([
        ((x,y), dest)
        for x in range(image.shape[0])
        for y in range(image.shape[1])
        for dest in ((x+1,y), (x,y+1))
        if data_0[y][x] != data_0[dest[1]-1][dest[0]-1]
    ], linestyle='solid', colors='white')
    plt.gca().add_collection(lines_0)

    lines_1 = LineCollection([
        ((x,y), dest)
        for x in range(image.shape[0])
        for y in range(image.shape[1])
        for dest in ((x+1,y), (x,y+1))
        if data_1[y][x] != data_1[dest[1]-1][dest[0]-1]
    ], linestyle='solid', colors='black')

    plt.gca().add_collection(lines_1)

    plt.savefig(
        kn.pack({
            'title' : 'consistent_regulator_viz',
            'update' : str(upd),
            'seed' : kn.unpack(filename)['seed'],
            'treat' : kn.unpack(filename)['treat'],
            '_data_hathash_hash' : fsh.FilesHash().hash_files([filename]),
            '_script_fullcat_hash' : fsh.FilesHash(
                                                file_parcel="full_parcel",
                                                files_join="cat_join"
                                            ).hash_files([sys.argv[0]]),
            '_source_hash' :kn.unpack(filename)['_source_hash'],
            'ext' : '.png'
        }),
        transparent=True,
        bbox_inches='tight',
        pad_inches=0
    )

    plt.clf()
    plt.close(plt.gcf())
Exemplo n.º 14
0
print('calculating upload path')
print('---------------------------------------------------------------------')
################################################################################

# common_keys = set.intersection(*[
#     set( kn.unpack(source).keys() )
#     for source in sources
# ])

out_filename = kn.pack({
    # **{
    #     key : ib.dub(
    #         kn.unpack(source)[key]
    #         for source in sources
    #     )
    #     for key in common_keys
    # },
    # **{
    'a': 'series_profiles',
    'stint': stint,
    'ext': '.csv.xz',
    # },
})

out_prefix = f'endeavor={endeavor}/series-profiles/stage=6+what=tabulated_and_stitched/stint={stint}/'
out_path = out_prefix + out_filename

print(f'upload path will be s3://{bucket}/{out_path}')

################################################################################
print()
print('dumping and uploading')
Exemplo n.º 15
0
        return CalcNotSurroundedRate(filename)
    except Exception as e:
        print("warning: corrupt or incomplete data file... skipping")
        print("   ", e)
        return None


print("num files:", len(filenames))

outfile = kn.pack({
    '_data_hathash_hash':
    fsh.FilesHash().hash_files(filenames),
    '_script_fullcat_hash':
    fsh.FilesHash(file_parcel="full_parcel",
                  files_join="cat_join").hash_files([sys.argv[0]]),
    '_source_hash':
    kn.unpack(filenames[0])['_source_hash'],
    'title':
    'reproductive_labor_surrounded',
    'ext':
    '.csv'
})

pd.DataFrame.from_dict([{
    'Treatment': kn.unpack(filename)['treat'],
    'Reproduction Rate': res,
    'Channel 1 Surrounded': 'True',
    'First Update': first_update,
    'Last Update': last_update
} for res, filename in zip(
    Parallel(n_jobs=-1)(delayed(SafeCalcSurroundedRate)(filename)
Exemplo n.º 16
0
    )

# draw graphs
sns.barplot(
    data=df,
    x="Genotype",
    y="Quadrant Resource-Sharing Standard Deviation",
)

outfile = kn.pack({
    'title':
    'sharingquadrant',
    '_data_hathash_hash':
    fsh.FilesHash().hash_files([dataframe_filename]),
    '_script_fullcat_hash':
    fsh.FilesHash(file_parcel="full_parcel",
                  files_join="cat_join").hash_files([sys.argv[0]]),
    '_source_hash':
    kn.unpack(dataframe_filename)['_source_hash'],
    'ext':
    '.pdf',
})

plt.gcf().savefig(
    outfile,
    transparent=True,
    bbox_inches='tight',
    pad_inches=0,
)

print('Output saved to', outfile)
def estimate_interpolation_complexity(
    *,
    series,
    interpolation_competitions_df,
):

    # filter for just this series,
    # from the point of view of the nop-interpolated variants
    # not the controls which have nans for num nopped
    fil = interpolation_competitions_df[
        interpolation_competitions_df['genome series'] == series].dropna(
            subset=['genome nop_interpolation_num_nopped'], )

    res = {
        'none_nopped_is_less_fit': (ip.popsingleton(fil[
            fil['genome nop_interpolation_num_nopped'] == 0]['Is Less Fit'])),
        'all_nopped_is_less_fit':
        (ip.popsingleton(fil[fil['genome nop_interpolation_num_nopped'] == max(
            fil['genome nop_interpolation_num_nopped'])]['Is Less Fit'])),
        'credible_interval_lower_bound_idx':
        math.nan,
        'most_credible_idx':
        math.nan,
        'most_credible_likelihood':
        math.nan,
        'most_credible_set_size':
        math.nan,
        'interpolation_complexity':
        math.nan,
        'credible_interval_upper_bound_idx':
        math.nan,
        'Series':
        series,
    }

    if res['none_nopped_is_less_fit'] or not res['all_nopped_is_less_fit']:
        return res

    for set_size in it.count(start=1):
        loglikelihoods = calc_loglikelihoods_by_num_sets(
            interpolation_competitions_df=interpolation_competitions_df,
            series=series,
            set_size=set_size,
        )
        likelihoods = [np.exp(loglike) for loglike in loglikelihoods]

        cur = estimate_credible_interval(likelihoods)

        for k, v in cur.items():
            res[kn.pack({
                'a': k,
                'set_size': str(set_size),
            })] = v

        if math.isnan(res['most_credible_likelihood']) \
            or cur['most_credible_likelihood'] \
                > res['most_credible_likelihood']:

            res['most_credible_set_size'] = set_size
            # might consider multiplying this by set_size
            res['interpolation_complexity'] = cur['most_credible_idx']

            if math.isnan(cur['most_credible_likelihood']):
                return res

            # should update 'most_credible_likelihood' and other fields
            res.update(cur)

        else:
            # likelihood was worse for this set_size
            # don't investigate further set_sizes
            break

    return res
Exemplo n.º 18
0
def RenderAndSave(upd, filename):

    file = h5py.File(filename, 'r')
    nlev = int(file.attrs.get('NLEV'))

    data_0 = np.array(file['Channel']['lev_0']['upd_'+str(upd)])
    data_1 = (
        np.array(file['Channel']['lev_0']['upd_'+str(upd)])
        if nlev == 1 else
        np.array(file['Channel']['lev_1']['upd_'+str(upd)])
    )

    image = np.array([
        [
            tuple(colorsys.hsv_to_rgb(
                (val_1/2**63)%1.0,
                (val_0/2**63)%0.6 + 0.4,
                1.0
            ))
            if val_0 and val_1 else (0,0,0)
        for val_0, val_1 in zip(row_0, row_1)
        ]
    for row_0, row_1 in zip(data_0, data_1)])

    plt.figure(figsize=(18,18))

    plt.imshow(
        image,
        extent = (0, image.shape[1], image.shape[0], 0)
    )

    plt.axis('off')
    plt.grid(b=None)

    lines_0 = LineCollection([
        ((x,y), dest)
        for x in range(image.shape[0])
        for y in range(image.shape[1])
        for dest in ((x+1,y), (x,y+1))
        if data_0[y][x] != data_0[dest[1]-1][dest[0]-1]
    ], linestyle='solid', colors='white')
    plt.gca().add_collection(lines_0)

    lines_1 = LineCollection([
        ((x,y), dest)
        for x in range(image.shape[0])
        for y in range(image.shape[1])
        for dest in ((x+1,y), (x,y+1))
        if data_1[y][x] != data_1[dest[1]-1][dest[0]-1]
    ], linestyle='solid', colors='black')
    plt.gca().add_collection(lines_1)

    plt.savefig(
        kn.pack({
            'title' : 'channel_viz',
            'update' : str(upd),
            'seed' : kn.unpack(filename)['seed'],
            'treat' : kn.unpack(filename)['treat'],
            '_data_hathash_hash' : fsh.FilesHash().hash_files([filename]),
            '_script_fullcat_hash' : fsh.FilesHash(
                                                file_parcel="full_parcel",
                                                files_join="cat_join"
                                            ).hash_files([sys.argv[0]]),
            '_source_hash' :kn.unpack(filename)['_source_hash'],
            'ext' : '.png'
        }),
        transparent=True,
        bbox_inches='tight',
        pad_inches=0
    )

    plt.clf()
    plt.close(plt.gcf())
Exemplo n.º 19
0
        ax=ax1)
    xs = sorted(p.get_x() for p in ax1.patches)
    width = ax1.patches[0].get_width()
    for i, (a, b, c) in enumerate(grouper(xs, 3)):
        plt.plot((a, c + width), (1 - i / 9, 1 - i / 9), 'k:')
    box = g.get_position()
    g.set_position([box.x0, box.y0, box.width * 0.85, box.height])
    g.legend(title="Selector",
             loc='center right',
             bbox_to_anchor=(1.2, 0.5),
             ncol=1)

    # save to disk
    outfile = "depo-consensus+" + kn.pack({
        "size": size,
        "title": "barplot",
        "ext": ext,
    })
    plt.gcf().set_figwidth(11)
    plt.gcf().set_figheight(3)
    plt.savefig(
        outfile,
        transparent=True,
        bbox_inches='tight',
        pad_inches=0,
    )

    plt.clf()
    plt.close()

    # SWARMPLOT ################################################################
Exemplo n.º 20
0
def RenderAndSave(upd, filename):

    file = h5py.File(filename, 'r')
    nlev = int(file.attrs.get('NLEV'))

    own = np.array(file['Index']['own']).flatten()
    dirs = {
        'top': np.array(file['Index']['dir_0']).flatten(),
        'bottom': np.array(file['Index']['dir_1']).flatten(),
        'left': np.array(file['Index']['dir_3']).flatten(),
        'right': np.array(file['Index']['dir_2']).flatten(),
    }

    chans = [
        np.array(file['Channel']['lev_' + str(lev)]['upd_' +
                                                    str(upd)]).flatten()
        for lev in range(nlev)
    ]
    cage = np.array(file['CellAge']['upd_' + str(upd)]).flatten()
    pvch = np.array(file['PrevChan']['upd_' + str(upd)]).flatten()
    ppos = np.array(file['ParentPos']['upd_' + str(upd)]).flatten()

    live = np.array(file['Live']['upd_' + str(upd)])

    data_0 = np.array(file['Channel']['lev_0']['upd_' + str(upd)])
    data_1 = (np.array(file['Channel']['lev_0']['upd_' + str(upd)]) if nlev
              == 1 else np.array(file['Channel']['lev_1']['upd_' + str(upd)]))

    res = defaultdict(dict)
    for idx in range(own.size):
        for dir, drct in dirs.items():
            type = NONE
            if pvch[idx] == chans[-1][drct[idx]]:
                type = P_CHILD
            elif pvch[drct[idx]] == chans[-1][idx]:
                type = P_PARENT
            else:
                # grayscale channel ID
                type = (chans[-1][idx] / 2**64) * 0.8

            res[own[idx]][dir] = type

    own = np.array(file['Index']['own'])
    live = np.array(file['Live']['upd_' + str(upd)])

    image = np.flip(np.rot90(np.transpose(
        np.block([[
            np.transpose(
                RenderTriangles(res[val_own]['top'], res[val_own]['bottom'],
                                res[val_own]['right'], res[val_own]['left'],
                                val_live))
            for val_own, val_live in zip(row_own, row_live)
        ] for row_own, row_live in zip(own, live)])),
                             k=1),
                    axis=0)

    plt.figure(figsize=(18, 18))

    plt.imshow(image, extent=(0, image.shape[1], image.shape[0], 0))

    plt.axis('off')
    plt.grid(b=None)

    rescale = lambda coord: [v * 42 for v in coord]
    lines_0 = LineCollection(
        [[rescale(coord) for coord in ((x, y), dest)]
         for x in range(data_0.shape[0]) for y in range(data_0.shape[1])
         for dest in ((x + 1, y), (x, y + 1))
         if data_0[y][x] != data_0[dest[1] - 1][dest[0] - 1]],
        linestyle=(0, (1, 3)),
        colors='0.5')
    plt.gca().add_collection(lines_0)

    lines_1 = LineCollection(
        [[rescale(coord) for coord in ((x, y), dest)]
         for x in range(data_1.shape[0]) for y in range(data_1.shape[1])
         for dest in ((x + 1, y), (x, y + 1))
         if data_1[y][x] != data_1[dest[1] - 1][dest[0] - 1]],
        linestyle='solid',
        colors='black')
    plt.gca().add_collection(lines_1)

    plt.savefig(kn.pack({
        'title':
        'directional_propagule_viz',
        'update':
        str(upd),
        'seed':
        kn.unpack(filename)['seed'],
        'treat':
        kn.unpack(filename)['treat'],
        '_data_hathash_hash':
        fsh.FilesHash().hash_files([filename]),
        '_script_fullcat_hash':
        fsh.FilesHash(file_parcel="full_parcel",
                      files_join="cat_join").hash_files([sys.argv[0]]),
        '_source_hash':
        kn.unpack(filename)['_source_hash'],
        'ext':
        '.png'
    }),
                transparent=True,
                bbox_inches='tight',
                pad_inches=0)

    plt.clf()
    plt.close(plt.gcf())
Exemplo n.º 21
0
    'Update',
    'Maximum Fitness',
    hue='Metric',
    style='Metric',
    hue_order=sorted(df['Metric'].unique()),
    style_order=sorted(df['Metric'].unique()),
).add_legend().set(xscale='log')

plt.gcf().set_size_inches(7.5, 6)

outfile = kn.pack({
    'viz':
    'max-fitness-line',
    '_data_hathash_hash':
    fsh.FilesHash().hash_files([filename]),
    '_script_fullcat_hash':
    fsh.FilesHash(file_parcel="full_parcel",
                  files_join="cat_join").hash_files([sys.argv[0]]),
    'ext':
    '.pdf'
})
plt.savefig(
    outfile,
    transparent=True,
    bbox_inches='tight',
    pad_inches=0,
)
print("output saved to", outfile)

plt.clf()
Exemplo n.º 22
0
assert any('stage' in kn.unpack(segment) and 'what' in kn.unpack(segment)
           for segment in prefix.split('/'))

stages, = [
    list(kn.unpack(segment)['stage'].split('~'))
    for segment in prefix.split('/')
    if 'stage' in kn.unpack(segment) and 'what' in kn.unpack(segment)
]

print(f'stages {stages}')

prefixes = [
    '/'.join(
        kn.pack({
            **kn.unpack(segment),
            **{
                'stage': stage,
            },
        }) if 'stage' in kn.unpack(segment) and 'what' in kn.unpack(segment)
        else segment for segment in prefix.split('/')) for stage in stages
]

print(f'prefixes {prefixes}')

################################################################################
print()
print('grepping for source files')
print('-------------------------')
################################################################################

client = boto3.client(
    's3',
Exemplo n.º 23
0
        'resource-even__channelsense-no__nlev-two__mute__mixed': 'Mixed',
        'resource-even__channelsense-yes__nlev-two': 'Even',
        'resource-wave__channelsense-yes__nlev-onebig': 'Flat',
        'resource-wave__channelsense-yes__nlev-two': 'Nested'
    }[raw])

ax = sns.barplot(x="Treatment", y="Mean Set Regulators", data=df)
plt.xticks(rotation=30)

outfile = kn.pack({
    '_data_hathash_hash':
    fsh.FilesHash().hash_files([dataframe_filename]),
    '_script_fullcat_hash':
    fsh.FilesHash(file_parcel="full_parcel",
                  files_join="cat_join").hash_files([sys.argv[0]]),
    '_source_hash':
    kn.unpack(dataframe_filename)['_source_hash'],
    'title':
    'regulator',
    'ext':
    '.pdf'
})

ax.get_figure().savefig(outfile,
                        transparent=True,
                        bbox_inches='tight',
                        pad_inches=0)

print('Output saved to', outfile)

plt.clf()
def RenderAndSave(upd, filename):

    file = h5py.File(filename, 'r')
    nlev = int(file.attrs.get('NLEV'))

    channel = np.array(
        file['Channel']['lev_'+str(nlev-1)]['upd_'+str(upd)]
    ).flatten()
    regulator = [
        np.array(
            file['Regulators']['dir_'+str(dir)]['upd_'+str(upd)]
        ).flatten()
        for dir in range(4)
    ]
    decoder = np.array(
        file['Regulators']['decoder']['upd_'+str(upd)]
    ).flatten()
    live = np.array(file['Live']['upd_'+str(upd)])
    index = np.array(file['Index']['own'])

    data_0 = np.array(file['Channel']['lev_0']['upd_'+str(upd)])
    data_1 = (
        np.array(file['Channel']['lev_0']['upd_'+str(upd)])
        if nlev == 1 else
        np.array(file['Channel']['lev_1']['upd_'+str(upd)])
    )

    # get unique group IDs
    ids = { id for id in channel.flatten() }

    # for each group, get all functions
    cmapper = [ {} for dir in range(4) ]
    for id in ids:
        tags_to_regs = []
        idxs = []
        dirs = []
        for flat_idx, idx in enumerate(index.flatten()):
            if channel[flat_idx] == id:
                for dir in range(4):
                    idxs.append( idx )
                    dirs.append( dir )
                    if live.flatten()[flat_idx]:
                        archive = json.loads(
                            decoder[regulator[dir][flat_idx]].decode("utf-8")
                        )['value0']
                        tags = {
                            d['key'] : d['value']['value0']['value0']
                            for d in archive['tags']
                        }
                        regulators = {
                            d['key'] : d['value']
                            for d in archive['regulators']
                        }
                        tags_to_regs.append({
                            tags[uid] : regulators[uid]["state"] for uid in archive['uids']
                        })

        df = pd.DataFrame.from_records(tags_to_regs).fillna(1)

        n=min(3, len(df.columns), len(df))
        if n:
            pca = PCA(n_components=n)

            pc = None
            with warnings.catch_warnings():
                # ignore sklearn and divide by zero warnings
                # (we handle them below)
                warnings.simplefilter("ignore")
                pc = pca.fit_transform(df.to_numpy())
                pc = (pc - pc.min(0)) / pc.ptp(0)

            for idx, dir, row in zip(idxs, dirs, pc):
                cmapper[dir][idx] = (
                    row[0] if row.size >= 1 and not np.isnan(row[0]) else 0.5,
                    row[1] if row.size >= 2 and not np.isnan(row[1]) else 0.5,
                    row[2] if row.size >= 3 and not np.isnan(row[2]) else 0.5,
                )
        else:
            for idx, dir in zip(idxs, dirs):
                cmapper[dir][idx] = (0.5, 0.5, 0.5)

    image = np.flip(np.rot90(np.transpose(np.block([
        [
            np.transpose(RenderTriangles(
                cmapper[0][val_index],
                cmapper[1][val_index],
                cmapper[2][val_index],
                cmapper[3][val_index],
                val_live
            )) for val_live, val_index in zip(row_live, row_index)
        ]
        for row_live, row_index
        in zip(live, index)
    ])),k=1),axis=0)

    plt.figure(figsize=(18,18))

    plt.imshow(
        image,
        extent = (0, image.shape[1], image.shape[0], 0)
    )

    plt.axis('off')
    plt.grid(b=None)

    rescale = lambda coord: [v * 42 for v in coord]
    lines_0 = LineCollection([
        [ rescale(coord) for coord in ((x,y), dest) ]
        for x in range(index.shape[0])
        for y in range(index.shape[1])
        for dest in ((x+1,y), (x,y+1))
        if data_0[y][x] != data_0[dest[1]-1][dest[0]-1]
    ], linestyle='solid', colors='white', linewidths=(2,))
    plt.gca().add_collection(lines_0)

    lines_1 = LineCollection([
        [ rescale(coord) for coord in ((x,y), dest) ]
        for x in range(index.shape[0])
        for y in range(index.shape[1])
        for dest in ((x+1,y), (x,y+1))
        if data_1[y][x] != data_1[dest[1]-1][dest[0]-1]
    ], linestyle='solid', colors='black', linewidths=(2,))
    plt.gca().add_collection(lines_1)

    plt.savefig(
        kn.pack({
            'title' : 'directional_regulator_viz',
            'update' : str(upd),
            'seed' : kn.unpack(filename)['seed'],
            'treat' : kn.unpack(filename)['treat'],
            '_data_hathash_hash' : fsh.FilesHash().hash_files([filename]),
            '_script_fullcat_hash' : fsh.FilesHash(
                                                file_parcel="full_parcel",
                                                files_join="cat_join"
                                            ).hash_files([sys.argv[0]]),
            '_source_hash' :kn.unpack(filename)['_source_hash'],
            'ext' : '.png'
        }),
        transparent=True,
        bbox_inches='tight',
        pad_inches=0
    )

    plt.clf()
    plt.close(plt.gcf())
Exemplo n.º 25
0
    data=df[df["Cause"] == "Apoptosis"],
)

ax.set(
    ylim=(0,
          df[df["Cause"] == "Apoptosis"]["Per-Cell-Update Death Rate"].max() *
          1.1))
plt.xticks(rotation=-90)

outfile = kn.pack({
    'title':
    'apoptosis',
    '_data_hathash_hash':
    fsh.FilesHash().hash_files([dataframe_filename]),
    '_script_fullcat_hash':
    fsh.FilesHash(file_parcel="full_parcel",
                  files_join="cat_join").hash_files([sys.argv[0]]),
    '_source_hash':
    kn.unpack(dataframe_filename)['_source_hash'],
    'ext':
    '.pdf'
})

ax.get_figure().savefig(outfile,
                        transparent=True,
                        bbox_inches='tight',
                        pad_inches=0)

print('Output saved to', outfile)

plt.clf()
Exemplo n.º 26
0
    ])


def ExtractUpdates(file):
    return [int(re.findall('\d+', key)[0]) for key in file['Apoptosis'].keys()]


outfile = kn.pack({
    'title':
    'apoptosis_series',
    'seed':
    kn.unpack(filename)['seed'],
    'treat':
    kn.unpack(filename)['treat'],
    '_data_fullcat_hash':
    fsh.FilesHash(file_parcel="full_parcel",
                  files_join="cat_join").hash_files([filename]),
    '_script_fullcat_hash':
    fsh.FilesHash(file_parcel="full_parcel",
                  files_join="cat_join").hash_files([sys.argv[0]]),
    '_source_hash':
    kn.unpack(filename)['_source_hash'],
    'ext':
    '.csv'
})

pd.DataFrame.from_dict([{
    'Treatment': kn.unpack(filename)['treat'],
    'Per-Cell-Update Apoptosis Rate': val,
    'Type': type,
    'Update': upd,
} for upd in ExtractUpdates(file) for type, val in [(
Exemplo n.º 27
0
        "Median Load Centrality":
        np.median(load_cvals),
        "Load Centrality Variance":
        np.var(load_cvals),
        "Minimum Spanning Weight":
        nx.minimum_spanning_tree(G.to_undirected()).size(weight='weight')
    })

outfile = kn.pack({
    'title':
    kn.unpack(dataframe_filename)['title'] + "-stats",
    'bitweight':
    kn.unpack(dataframe_filename)['bitweight'],
    'seed':
    kn.unpack(dataframe_filename)['seed'],
    '_data_hathash_hash':
    fsh.FilesHash().hash_files([dataframe_filename]),
    '_script_fullcat_hash':
    fsh.FilesHash(file_parcel="full_parcel",
                  files_join="cat_join").hash_files([sys.argv[0]]),
    # '_source_hash' :kn.unpack(dataframe_filename)['_source_hash'],
    'ext':
    '.csv'
})
pd.DataFrame.from_records(out).to_csv(outfile, index=False)
print("output saved to", outfile)

outfile = kn.pack({
    'title':
    kn.unpack(dataframe_filename)['title'] + "-eigenvector-centralities",
    'bitweight':
    kn.unpack(dataframe_filename)['bitweight'],
Exemplo n.º 28
0
def RenderAndSave(upd, filename):

    file = h5py.File(filename, 'r')
    nlev = int(file.attrs.get('NLEV'))

    top = np.array(file['InboxTraffic']['dir_0']['upd_'+str(upd)])
    bottom = np.array(file['InboxTraffic']['dir_1']['upd_'+str(upd)])
    left = np.array(file['InboxTraffic']['dir_3']['upd_'+str(upd)])
    right = np.array(file['InboxTraffic']['dir_2']['upd_'+str(upd)])
    live = np.array(file['Live']['upd_'+str(upd)])

    data_0 = np.array(file['Channel']['lev_0']['upd_'+str(upd)])
    data_1 = (
        np.array(file['Channel']['lev_0']['upd_'+str(upd)])
        if nlev == 1 else
        np.array(file['Channel']['lev_1']['upd_'+str(upd)])
    )

    image = np.flip(np.rot90(np.transpose(np.block([
        [
            np.transpose(RenderTriangles(
                val_top,
                val_bottom,
                val_right,
                val_left,
                val_live
            )) for val_top, val_bottom, val_left, val_right, val_live in zip(
                row_top,
                row_bottom,
                row_left,
                row_right,
                row_live
            )
        ]
        for row_top, row_bottom, row_left, row_right, row_live
        in zip(
            top,
            bottom,
            left,
            right,
            live
        )
    ])),k=1),axis=0)

    plt.figure(figsize=(18,18))

    plt.imshow(
        image,
        extent = (0, image.shape[1], image.shape[0], 0)
    )

    plt.axis('off')
    plt.grid(b=None)

    rescale = lambda coord: [v * 42 for v in coord]
    lines_0 = LineCollection([
        [ rescale(coord) for coord in ((x,y), dest) ]
        for x in range(data_0.shape[0])
        for y in range(data_0.shape[1])
        for dest in ((x+1,y), (x,y+1))
        if data_0[y][x] != data_0[dest[1]-1][dest[0]-1]
    ], linestyle=(0, (1, 3)), colors='0.5')
    plt.gca().add_collection(lines_0)

    lines_1 = LineCollection([
        [ rescale(coord) for coord in ((x,y), dest) ]
        for x in range(data_1.shape[0])
        for y in range(data_1.shape[1])
        for dest in ((x+1,y), (x,y+1))
        if data_1[y][x] != data_1[dest[1]-1][dest[0]-1]
    ], linestyle='solid', colors='black')
    plt.gca().add_collection(lines_1)

    plt.savefig(
        kn.pack({
            'title' : 'directional_messaging_viz',
            'update' : str(upd),
            'seed' : kn.unpack(filename)['seed'],
            'treat' : kn.unpack(filename)['treat'],
            '_data_hathash_hash' : fsh.FilesHash().hash_files([filename]),
            '_script_fullcat_hash' : fsh.FilesHash(
                                                file_parcel="full_parcel",
                                                files_join="cat_join"
                                            ).hash_files([sys.argv[0]]),
            '_source_hash' :kn.unpack(filename)['_source_hash'],
            'ext' : '.png'
        }),
        transparent=True,
        bbox_inches='tight',
        pad_inches=0
    )

    plt.clf()
    plt.close(plt.gcf())
Exemplo n.º 29
0
        df = pd.read_csv(filename)
        df["seed"] = int(kn.unpack(Path(filename).parts[-2])["seed"])
        df["step"] = int(kn.unpack(Path(filename).parts[-2])["step"])
        dfs.append(df)
    except pd.io.common.EmptyDataError:
        print(filename, " is empty and has been skipped.")

df = pd.concat(dfs)

df = df[df["step"] < 1050]

outfile = kn.pack({
    'title' : 'mastergenerations',
    '_data_hathash_hash' : fsh.FilesHash().hash_files(filenames),
    '_script_fullcat_hash' : fsh.FilesHash(
                                file_parcel="full_parcel",
                                files_join="cat_join"
                            ).hash_files([sys.argv[0]]),
    '_source_hash' :kn.unpack(filenames[0])['_source_hash'],
    'ext' : '.csv'
})

df.to_csv(outfile, index=False)

print('Output saved to', outfile)

x = df.groupby(["step", "seed", "Level"]).mean()
y = x.reset_index().groupby(["seed", "Level"]).sum().reset_index()

for level in df["Level"].unique():

    fil = y[y["Level"] == level]
Exemplo n.º 30
0
        'Order': next(counter),
    },
    'Memory Intensive': {
        'Grid Size': lambda work: 4096,
        'Resistance': lambda work: work,
        'Order': next(counter),
    },
}

# load and set up DataFrame
res = []
for treatment in treatments:
    df = pd.read_csv(
        kn.pack({
            'Synchronous': str(synchronous),
            'Treatment': treatment.replace(' ', '_'),
            'ext': '.csv',
        }))
    df['Treatment'] = treatment
    df['Grid Size'] = df.apply(
        lambda row: treatments[treatment]['Grid Size'](row['Work']),
        axis=1,
    )
    df['Resistance'] = df.apply(
        lambda row: treatments[treatment]['Resistance'](row['Work']),
        axis=1,
    )
    res.append(df)

df = pd.concat(res)