Exemplo n.º 1
0
Arquivo: gcn.py Projeto: 0h-n0/kGCN
def visualize(sess, config, args):
    from tensorflow.python import debug as tf_debug
    from kgcn.visualization import cal_feature_IG
    # 入力は1分子づつ
    batch_size = 1
    # 入力データから、全データの情報, 学習用データの情報, 検証用データの情報, および
    # グラフに関する情報を順に取得する
    all_data, info = load_data(config,
                               filename=config["dataset"],
                               prohibit_shuffle=True)
    #all_data.labels = tf.one_hot(tf.cast(tf.squeeze(all_data.labels), tf.int32), depth=2)
    model = importlib.import_module(config["model.py"])
    placeholders = model.build_placeholders(info,
                                            config,
                                            batch_size=batch_size)
    try:
        _model, prediction, _, _, _ = model.build_model(
            placeholders,
            info,
            config,
            batch_size=batch_size,
            feed_embedded_layer=True)
    except:
        _model, prediction, _, _, _ = model.build_model(placeholders,
                                                        info,
                                                        config,
                                                        batch_size=batch_size)
    #--- セッションの初期化
    saver = tf.train.Saver()
    print("[LOAD]", config["load_model"])

    saver.restore(sess, config["load_model"])
    #--- integrated gradientsの計算
    cal_feature_IG(sess,
                   all_data,
                   placeholders,
                   info,
                   prediction,
                   args.ig_modal_target,
                   args.ig_label_target,
                   logger=tf.logging,
                   model=_model)
Exemplo n.º 2
0
def visualize(sess, config, args):
    from kgcn.visualization import cal_feature_IG, cal_feature_IG_for_kg
    # input a molecule at a time
    batch_size = 1
    dataset_filename = config["dataset"]
    if "dataset_test" in config:
        dataset_filename = config["dataset_test"]
    all_data, info = load_data(config,
                               filename=dataset_filename,
                               prohibit_shuffle=True)

    model = CoreModel(sess, config, info)
    load_model_py(model,
                  config["model.py"],
                  is_train=False,
                  feed_embedded_layer=True,
                  batch_size=batch_size)
    placeholders = model.placeholders
    restore_ckpt(sess, config['load_model'])
    # calculate integrated gradients
    if config['visualize_type'] == 'graph':
        cal_feature_IG(sess,
                       all_data,
                       placeholders,
                       info,
                       config,
                       model.prediction,
                       args.ig_modal_target,
                       args.ig_label_target,
                       logger=tf.logging,
                       model=model.nn,
                       args=args)
    else:
        cal_feature_IG_for_kg(sess,
                              all_data,
                              placeholders,
                              info,
                              config,
                              model.prediction,
                              logger=tf.logging,
                              model=model.nn,
                              args=args)
Exemplo n.º 3
0
def visualize(sess, config, args):
    from tensorflow.python import debug as tf_debug
    from kgcn.visualization import cal_feature_IG, cal_feature_IG_for_kg
    # 入力は1分子づつ
    batch_size = 1
    # 入力データから、全データの情報, 学習用データの情報, 検証用データの情報, および
    # グラフに関する情報を順に取得する
    all_data, info = load_data(config,
                               filename=config["dataset"],
                               prohibit_shuffle=True)

    model = importlib.import_module(config["model.py"])
    try:
        # emmbedingレイヤを使っているモデルの可視化。IGはemmbedingレイヤの出力を対象にして計算される。
        placeholders = model.build_placeholders(info,
                                                config,
                                                batch_size=batch_size,
                                                feed_embedded_layer=True)
    except:
        placeholders = model.build_placeholders(info,
                                                config,
                                                batch_size=batch_size)
    try:
        # emmbedingレイヤを使っているモデルの可視化。IGはemmbedingレイヤの出力を対象にして計算される。
        _model, prediction, _, _, _ = model.build_model(
            placeholders,
            info,
            config,
            batch_size=batch_size,
            feed_embedded_layer=True)
    except:
        _model, prediction, _, _, _ = model.build_model(placeholders,
                                                        info,
                                                        config,
                                                        batch_size=batch_size)
    #--- セッションの初期化
    saver = tf.train.Saver()
    #tf.compat.v1.logging.info("[LOAD]", config["load_model"])
    tf.logging.info("[LOAD]", config["load_model"])

    saver.restore(sess, config["load_model"])
    #--- integrated gradientsの計算
    if config['visualize_type'] == 'graph':
        cal_feature_IG(sess,
                       all_data,
                       placeholders,
                       info,
                       prediction,
                       args.ig_modal_target,
                       args.ig_label_target,
                       logger=tf.logging,
                       model=_model)
        #logger=tf.compat.v1.logging, model=_model)
    else:
        cal_feature_IG_for_kg(sess,
                              all_data,
                              placeholders,
                              info,
                              config,
                              prediction,
                              logger=tf.logging,
                              model=_model)