Exemplo n.º 1
0
def job_fssdJ1q_med(p, data_source, tr, te, r, J=1, null_sim=None):
    """
    FSSD test with a Gaussian kernel, where the test locations are randomized,
    and the Gaussian width is set with the median heuristic. Use full sample.
    No training/testing splits.

    p: an UnnormalizedDensity
    data_source: a DataSource
    tr, te: Data
    r: trial number (positive integer)
    """
    if null_sim is None:
        null_sim = gof.FSSDH0SimCovObs(n_simulate=2000, seed=r)

    # full data
    data = tr + te
    X = data.data()
    with util.ContextTimer() as t:
        # median heuristic
        med = util.meddistance(X, subsample=1000)
        k = kernel.KGauss(med**2)
        V = util.fit_gaussian_draw(X, J, seed=r + 3)

        fssd_med = gof.FSSD(p, k, V, null_sim=null_sim, alpha=alpha)
        fssd_med_result = fssd_med.perform_test(data)
    return {
        'goftest': fssd_med,
        'test_result': fssd_med_result,
        'time_secs': t.secs
    }
Exemplo n.º 2
0
    def test_ustat_h1_mean_variance(self):
        seed = 20
        # sample
        n = 200
        alpha = 0.01
        for d in [1, 4]:
            mean = np.zeros(d)
            variance = 1
            isonorm = density.IsotropicNormal(mean, variance)

            draw_mean = mean + 2
            draw_variance = variance + 1
            X = util.randn(n, d,
                           seed=seed) * np.sqrt(draw_variance) + draw_mean
            dat = data.Data(X)

            # Test
            for J in [1, 3]:
                sig2 = util.meddistance(X, subsample=1000)**2
                k = kernel.KGauss(sig2)

                # random test locations
                V = util.fit_gaussian_draw(X, J, seed=seed + 1)

                null_sim = gof.FSSDH0SimCovObs(n_simulate=200, seed=3)
                fssd = gof.FSSD(isonorm, k, V, null_sim=null_sim, alpha=alpha)
                fea_tensor = fssd.feature_tensor(X)

                u_mean, u_variance = gof.FSSD.ustat_h1_mean_variance(
                    fea_tensor)

                # assertions
                self.assertGreaterEqual(u_variance, 0)
                # should reject H0
                self.assertGreaterEqual(u_mean, 0)
Exemplo n.º 3
0
 def __init__(self, p, q, k, l, V, W, alpha=0.01):
     """
     :param p: a kmod.density.UnnormalizedDensity (model 1)
     :param q: a kmod.density.UnnormalizedDensity (model 2)
     :param k: a DifferentiableKernel for defining the Stein function class of p
     :param l: a DifferentiableKernel for defining the Stein function class of q
     :param V: Jp x d numpy array of Jp test locations used in FSSD(p, k, V)
     :param W: Jq x d numpy array of Jq test locations used in FSSD(q, l, W)
     :param alpha: significance level of the test
     """
     super(DC_FSSD, self).__init__(p, q, alpha)
     self.k = k
     self.l = l
     self.V = V
     self.W = W
     # Construct two FSSD objects
     self.fssdp = gof.FSSD(p=p, k=k, V=V, null_sim=None, alpha=alpha)
     self.fssdq = gof.FSSD(p=q, k=l, V=W, null_sim=None, alpha=alpha)
Exemplo n.º 4
0
def job_fssdJ1q_imq_optv(p,
                         data_source,
                         tr,
                         te,
                         r,
                         J=1,
                         b=-0.5,
                         null_sim=None):
    """
    FSSD with optimization on tr. Test on te. Use an inverse multiquadric
    kernel (IMQ). Optimize only the test locations (V). Fix the kernel
    parameters to b = -0.5, c=1. These are the recommended values from

        Measuring Sample Quality with Kernels
        Jackson Gorham, Lester Mackey
    """
    if null_sim is None:
        null_sim = gof.FSSDH0SimCovObs(n_simulate=2000, seed=r)

    Xtr = tr.data()
    with util.ContextTimer() as t:
        # IMQ kernel parameters: b and c
        c = 1.0

        # fit a Gaussian to the data and draw to initialize V0
        V0 = util.fit_gaussian_draw(Xtr, J, seed=r + 1, reg=1e-6)

        ops = {
            'reg': 1e-5,
            'max_iter': 30,
            'tol_fun': 1e-6,
            'disp': True,
            'locs_bounds_frac': 20.0,
        }

        V_opt, info = gof.IMQFSSD.optimize_locs(p, tr, b, c, V0, **ops)

        k_imq = kernel.KIMQ(b=b, c=c)

        # Use the optimized parameters to construct a test
        fssd_imq = gof.FSSD(p, k_imq, V_opt, null_sim=null_sim, alpha=alpha)
        fssd_imq_result = fssd_imq.perform_test(te)

    return {
        'test_result': fssd_imq_result,
        'time_secs': t.secs,
        'goftest': fssd_imq,
        'opt_info': info,
    }
Exemplo n.º 5
0
def job_fssdJ1q_opt(p, data_source, tr, te, r, J=1, null_sim=None):
    """
    FSSD with optimization on tr. Test on te. Use a Gaussian kernel.
    """
    if null_sim is None:
        null_sim = gof.FSSDH0SimCovObs(n_simulate=2000, seed=r)

    Xtr = tr.data()
    with util.ContextTimer() as t:
        # Use grid search to initialize the gwidth
        n_gwidth_cand = 5
        gwidth_factors = 2.0**np.linspace(-3, 3, n_gwidth_cand)
        med2 = util.meddistance(Xtr, 1000)**2

        k = kernel.KGauss(med2 * 2)
        # fit a Gaussian to the data and draw to initialize V0
        V0 = util.fit_gaussian_draw(Xtr, J, seed=r + 1, reg=1e-6)
        list_gwidth = np.hstack(((med2) * gwidth_factors))
        besti, objs = gof.GaussFSSD.grid_search_gwidth(p, tr, V0, list_gwidth)
        gwidth = list_gwidth[besti]
        assert util.is_real_num(
            gwidth), 'gwidth not real. Was %s' % str(gwidth)
        assert gwidth > 0, 'gwidth not positive. Was %.3g' % gwidth
        logging.info('After grid search, gwidth=%.3g' % gwidth)

        ops = {
            'reg': 1e-2,
            'max_iter': 40,
            'tol_fun': 1e-4,
            'disp': True,
            'locs_bounds_frac': 10.0,
            'gwidth_lb': 1e-1,
            'gwidth_ub': 1e4,
        }

        V_opt, gwidth_opt, info = gof.GaussFSSD.optimize_locs_widths(
            p, tr, gwidth, V0, **ops)
        # Use the optimized parameters to construct a test
        k_opt = kernel.KGauss(gwidth_opt)
        fssd_opt = gof.FSSD(p, k_opt, V_opt, null_sim=null_sim, alpha=alpha)
        fssd_opt_result = fssd_opt.perform_test(te)
    return {
        'test_result': fssd_opt_result,
        'time_secs': t.secs,
        'goftest': fssd_opt,
        'opt_info': info,
    }
Exemplo n.º 6
0
def job_fssdJ1q_imq_optbv(p, data_source, tr, te, r, J=1, null_sim=None):
    """
    FSSD with optimization on tr. Test on te. Use an inverse multiquadric
    kernel (IMQ). Optimize the test locations (V), and b. Fix c (in the kernel)
    """
    if null_sim is None:
        null_sim = gof.FSSDH0SimCovObs(n_simulate=2000, seed=r)

    Xtr = tr.data()
    with util.ContextTimer() as t:
        # Initial IMQ kernel parameters: b and c
        b0 = -0.5
        # Fix c to this value
        c = 1.0
        c0 = c

        # fit a Gaussian to the data and draw to initialize V0
        V0 = util.fit_gaussian_draw(Xtr, J, seed=r + 1, reg=1e-6)

        ops = {
            'reg': 1e-5,
            'max_iter': 40,
            'tol_fun': 1e-6,
            'disp': True,
            'locs_bounds_frac': 20.0,
            # IMQ kernel bounds
            'b_lb': -20,
            'c_lb': c,
            'c_ub': c,
        }

        V_opt, b_opt, c_opt, info = gof.IMQFSSD.optimize_locs_params(
            p, tr, b0, c0, V0, **ops)

        k_imq = kernel.KIMQ(b=b_opt, c=c_opt)

        # Use the optimized parameters to construct a test
        fssd_imq = gof.FSSD(p, k_imq, V_opt, null_sim=null_sim, alpha=alpha)
        fssd_imq_result = fssd_imq.perform_test(te)

    return {
        'test_result': fssd_imq_result,
        'time_secs': t.secs,
        'goftest': fssd_imq,
        'opt_info': info,
    }
Exemplo n.º 7
0
    def test_optimized_fssd(self):
        """
        Test FSSD test with parameter optimization.
        """
        seed = 4
        # sample size
        n = 179
        alpha = 0.01
        for d in [1, 3]:
            mean = np.zeros(d)
            variance = 1.0
            p = density.IsotropicNormal(mean, variance)
            # Mean difference. obvious reject
            ds = data.DSIsotropicNormal(mean + 4, variance + 0)
            dat = ds.sample(n, seed=seed)
            # test
            for J in [1, 4]:
                opts = {
                    'reg': 1e-2,
                    'max_iter': 10,
                    'tol_fun': 1e-3,
                    'disp': False
                }
                tr, te = dat.split_tr_te(tr_proportion=0.3, seed=seed + 1)

                Xtr = tr.X
                gwidth0 = util.meddistance(Xtr, subsample=1000)**2
                # random test locations
                V0 = util.fit_gaussian_draw(Xtr, J, seed=seed + 1)
                V_opt, gw_opt, opt_result = \
                gof.GaussFSSD.optimize_locs_widths(p, tr, gwidth0, V0, **opts)

                # construct a test
                k_opt = kernel.KGauss(gw_opt)
                null_sim = gof.FSSDH0SimCovObs(n_simulate=2000, seed=10)
                fssd_opt = gof.FSSD(p,
                                    k_opt,
                                    V_opt,
                                    null_sim=null_sim,
                                    alpha=alpha)
                fssd_opt_result = fssd_opt.perform_test(
                    te, return_simulated_stats=True)
                assert fssd_opt_result['h0_rejected']
Exemplo n.º 8
0
    def test_auto_init_opt_fssd(self):
        """
        Test FSSD-opt test with automatic parameter initialization.
        """
        seed = 5
        # sample size
        n = 191
        alpha = 0.01
        for d in [1, 4]:
            mean = np.zeros(d)
            variance = 1.0
            p = density.IsotropicNormal(mean, variance)
            # Mean difference. obvious reject
            ds = data.DSIsotropicNormal(mean + 4, variance + 0)
            dat = ds.sample(n, seed=seed)
            # test
            for J in [1, 3]:
                opts = {
                    'reg': 1e-2,
                    'max_iter': 10,
                    'tol_fun': 1e-3,
                    'disp': False
                }
                tr, te = dat.split_tr_te(tr_proportion=0.3, seed=seed + 1)

                V_opt, gw_opt, opt_result = \
                gof.GaussFSSD.optimize_auto_init(p, tr, J, **opts)

                # construct a test
                k_opt = kernel.KGauss(gw_opt)
                null_sim = gof.FSSDH0SimCovObs(n_simulate=2000, seed=10)
                fssd_opt = gof.FSSD(p,
                                    k_opt,
                                    V_opt,
                                    null_sim=null_sim,
                                    alpha=alpha)
                fssd_opt_result = fssd_opt.perform_test(
                    te, return_simulated_stats=True)
                assert fssd_opt_result['h0_rejected']
Exemplo n.º 9
0
    def test_basic(self):
        """
        Nothing special. Just test basic things.
        """
        seed = 12
        # sample
        n = 100
        alpha = 0.01
        for d in [1, 4]:
            mean = np.zeros(d)
            variance = 1
            isonorm = density.IsotropicNormal(mean, variance)

            # only one dimension of the mean is shifted
            #draw_mean = mean + np.hstack((1, np.zeros(d-1)))
            draw_mean = mean + 0
            draw_variance = variance + 1
            X = util.randn(n, d,
                           seed=seed) * np.sqrt(draw_variance) + draw_mean
            dat = data.Data(X)

            # Test
            for J in [1, 3]:
                sig2 = util.meddistance(X, subsample=1000)**2
                k = kernel.KGauss(sig2)

                # random test locations
                V = util.fit_gaussian_draw(X, J, seed=seed + 1)
                null_sim = gof.FSSDH0SimCovObs(n_simulate=200, seed=3)
                fssd = gof.FSSD(isonorm, k, V, null_sim=null_sim, alpha=alpha)

                tresult = fssd.perform_test(dat, return_simulated_stats=True)

                # assertions
                self.assertGreaterEqual(tresult['pvalue'], 0)
                self.assertLessEqual(tresult['pvalue'], 1)