Exemplo n.º 1
0
 def save_model(cls, path, mlflow_model, signature=None, input_example=None):
     mlflow_model.flavors["flavor1"] = {"a": 1, "b": 2}
     mlflow_model.flavors["flavor2"] = {"x": 1, "y": 2}
     os.makedirs(path)
     if signature is not None:
         mlflow_model.signature = signature
     if input_example is not None:
         _save_example(mlflow_model, input_example, path)
     mlflow_model.save(os.path.join(path, "MLmodel"))
Exemplo n.º 2
0
def _save_model_metadata(dst_dir,
                         spark_model,
                         mlflow_model,
                         sample_input,
                         conda_env,
                         signature=None,
                         input_example=None):
    """
    Saves model metadata into the passed-in directory. The persisted metadata assumes that a
    model can be loaded from a relative path to the metadata file (currently hard-coded to
    "sparkml").
    """
    import pyspark

    if sample_input is not None:
        mleap.add_to_model(mlflow_model=mlflow_model,
                           path=dst_dir,
                           spark_model=spark_model,
                           sample_input=sample_input)
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, dst_dir)
    conda_env_subpath = "conda.yaml"
    if conda_env is None:
        conda_env = get_default_conda_env()
    elif not isinstance(conda_env, dict):
        with open(conda_env, "r") as f:
            conda_env = yaml.safe_load(f)
    with open(os.path.join(dst_dir, conda_env_subpath), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    mlflow_model.add_flavor(FLAVOR_NAME,
                            pyspark_version=pyspark.__version__,
                            model_data=_SPARK_MODEL_PATH_SUB)
    pyfunc.add_to_model(mlflow_model,
                        loader_module="mlflow.spark",
                        data=_SPARK_MODEL_PATH_SUB,
                        env=conda_env_subpath)
    mlflow_model.save(os.path.join(dst_dir, MLMODEL_FILE_NAME))
Exemplo n.º 3
0
def save_model(pytorch_model,
               path,
               conda_env=None,
               mlflow_model=None,
               code_paths=None,
               pickle_module=None,
               signature: ModelSignature = None,
               input_example: ModelInputExample = None,
               **kwargs):
    """
    Save a PyTorch model to a path on the local file system.

    :param pytorch_model: PyTorch model to be saved. Must accept a single ``torch.FloatTensor`` as
                          input and produce a single output tensor. Any code dependencies of the
                          model's class, including the class definition itself, should be
                          included in one of the following locations:

                          - The package(s) listed in the model's Conda environment, specified
                            by the ``conda_env`` parameter.
                          - One or more of the files specified by the ``code_paths`` parameter.

    :param path: Local path where the model is to be saved.
    :param conda_env: Either a dictionary representation of a Conda environment or the path to a
                      Conda environment yaml file. If provided, this decsribes the environment
                      this model should be run in. At minimum, it should specify the dependencies
                      contained in :func:`get_default_conda_env()`. If ``None``, the default
                      :func:`get_default_conda_env()` environment is added to the model. The
                      following is an *example* dictionary representation of a Conda environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.7.0',
                                'pytorch=0.4.1',
                                'torchvision=0.2.1'
                            ]
                        }

    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
    :param code_paths: A list of local filesystem paths to Python file dependencies (or directories
                       containing file dependencies). These files are *prepended* to the system
                       path when the model is loaded.
    :param pickle_module: The module that PyTorch should use to serialize ("pickle") the specified
                          ``pytorch_model``. This is passed as the ``pickle_module`` parameter
                          to ``torch.save()``. By default, this module is also used to
                          deserialize ("unpickle") the PyTorch model at load time.

    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.

    :param kwargs: kwargs to pass to ``torch.save`` method.

    .. code-block:: python
        :caption: Example

        import torch
        import mlflow
        import mlflow.pytorch
        # Create model and set values
        pytorch_model = Model()
        pytorch_model_path = ...
        # train our model
        for epoch in range(500):
            y_pred = pytorch_model(x_data)
            ...
        # Save the model
        with mlflow.start_run() as run:
            mlflow.log_param("epochs", 500)
            mlflow.pytorch.save_model(pytorch_model, pytorch_model_path)
    """
    import torch
    pickle_module = pickle_module or mlflow_pytorch_pickle_module

    if not isinstance(pytorch_model, torch.nn.Module):
        raise TypeError("Argument 'pytorch_model' should be a torch.nn.Module")
    if code_paths is not None:
        if not isinstance(code_paths, list):
            raise TypeError(
                'Argument code_paths should be a list, not {}'.format(
                    type(code_paths)))
    path = os.path.abspath(path)
    if os.path.exists(path):
        raise RuntimeError("Path '{}' already exists".format(path))

    if mlflow_model is None:
        mlflow_model = Model()

    os.makedirs(path)
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    model_data_subpath = "data"
    model_data_path = os.path.join(path, model_data_subpath)
    os.makedirs(model_data_path)
    # Persist the pickle module name as a file in the model's `data` directory. This is necessary
    # because the `data` directory is the only available parameter to `_load_pyfunc`, and it
    # does not contain the MLmodel configuration; therefore, it is not sufficient to place
    # the module name in the MLmodel
    #
    # TODO: Stop persisting this information to the filesystem once we have a mechanism for
    # supplying the MLmodel configuration to `mlflow.pytorch._load_pyfunc`
    pickle_module_path = os.path.join(model_data_path,
                                      _PICKLE_MODULE_INFO_FILE_NAME)
    with open(pickle_module_path, "w") as f:
        f.write(pickle_module.__name__)
    # Save pytorch model
    model_path = os.path.join(model_data_path,
                              _SERIALIZED_TORCH_MODEL_FILE_NAME)
    torch.save(pytorch_model,
               model_path,
               pickle_module=pickle_module,
               **kwargs)

    conda_env_subpath = "conda.yaml"
    if conda_env is None:
        conda_env = get_default_conda_env()
    elif not isinstance(conda_env, dict):
        with open(conda_env, "r") as f:
            conda_env = yaml.safe_load(f)
    with open(os.path.join(path, conda_env_subpath), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    if code_paths is not None:
        code_dir_subpath = "code"
        for code_path in code_paths:
            _copy_file_or_tree(src=code_path,
                               dst=path,
                               dst_dir=code_dir_subpath)
    else:
        code_dir_subpath = None

    mlflow_model.add_flavor(FLAVOR_NAME,
                            model_data=model_data_subpath,
                            pytorch_version=torch.__version__)
    pyfunc.add_to_model(mlflow_model,
                        loader_module="mlflow.pytorch",
                        data=model_data_subpath,
                        pickle_module_name=pickle_module.__name__,
                        code=code_dir_subpath,
                        env=conda_env_subpath)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
Exemplo n.º 4
0
Arquivo: onnx.py Projeto: iPieter/kiwi
def save_model(onnx_model,
               path,
               conda_env=None,
               mlflow_model=None,
               signature: ModelSignature = None,
               input_example: ModelInputExample = None):
    """
    Save an ONNX model to a path on the local file system.

    :param onnx_model: ONNX model to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: Either a dictionary representation of a Conda environment or the path to a
                      Conda environment yaml file. If provided, this describes the environment
                      this model should be run in. At minimum, it should specify the dependencies
                      contained in :func:`get_default_conda_env()`. If `None`, the default
                      :func:`get_default_conda_env()` environment is added to the model.
                      The following is an *example* dictionary representation of a Conda
                      environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.6.0',
                                'onnx=1.4.1',
                                'onnxruntime=0.3.0'
                            ]
                        }

    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.

    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.

    """
    import onnx

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException(message="Path '{}' already exists".format(path),
                              error_code=RESOURCE_ALREADY_EXISTS)
    os.makedirs(path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)
    model_data_subpath = "model.onnx"
    model_data_path = os.path.join(path, model_data_subpath)

    # Save onnx-model
    onnx.save_model(onnx_model, model_data_path)

    conda_env_subpath = "conda.yaml"
    if conda_env is None:
        conda_env = get_default_conda_env()
    elif not isinstance(conda_env, dict):
        with open(conda_env, "r") as f:
            conda_env = yaml.safe_load(f)
    with open(os.path.join(path, conda_env_subpath), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    pyfunc.add_to_model(mlflow_model,
                        loader_module="mlflow.onnx",
                        data=model_data_subpath,
                        env=conda_env_subpath)
    mlflow_model.add_flavor(FLAVOR_NAME,
                            onnx_version=onnx.__version__,
                            data=model_data_subpath)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
Exemplo n.º 5
0
def save_model(sk_model,
               path,
               conda_env=None,
               mlflow_model=None,
               serialization_format=SERIALIZATION_FORMAT_CLOUDPICKLE,
               signature: ModelSignature = None,
               input_example: ModelInputExample = None):
    """
    Save a scikit-learn model to a path on the local file system.

    :param sk_model: scikit-learn model to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: Either a dictionary representation of a Conda environment or the path to a
                      Conda environment yaml file. If provided, this decsribes the environment
                      this model should be run in. At minimum, it should specify the dependencies
                      contained in :func:`get_default_conda_env()`. If `None`, the default
                      :func:`get_default_conda_env()` environment is added to the model.
                      The following is an *example* dictionary representation of a Conda
                      environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.7.0',
                                'scikit-learn=0.19.2'
                            ]
                        }

    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
    :param serialization_format: The format in which to serialize the model. This should be one of
                                 the formats listed in
                                 ``mlflow.sklearn.SUPPORTED_SERIALIZATION_FORMATS``. The Cloudpickle
                                 format, ``mlflow.sklearn.SERIALIZATION_FORMAT_CLOUDPICKLE``,
                                 provides better cross-system compatibility by identifying and
                                 packaging code dependencies with the serialized model.

    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.


    .. code-block:: python
        :caption: Example

        import mlflow.sklearn
        from sklearn.datasets import load_iris
        from sklearn import tree

        iris = load_iris()
        sk_model = tree.DecisionTreeClassifier()
        sk_model = sk_model.fit(iris.data, iris.target)

        # Save the model in cloudpickle format
        # set path to location for persistence
        sk_path_dir_1 = ...
        mlflow.sklearn.save_model(
                sk_model, sk_path_dir_1,
                serialization_format=mlflow.sklearn.SERIALIZATION_FORMAT_CLOUDPICKLE)

        # save the model in pickle format
        # set path to location for persistence
        sk_path_dir_2 = ...
        mlflow.sklearn.save_model(sk_model, sk_path_dir_2,
                                  serialization_format=mlflow.sklearn.SERIALIZATION_FORMAT_PICKLE)
    """
    import sklearn
    if serialization_format not in SUPPORTED_SERIALIZATION_FORMATS:
        raise MlflowException(message=(
            "Unrecognized serialization format: {serialization_format}. Please specify one"
            " of the following supported formats: {supported_formats}.".format(
                serialization_format=serialization_format,
                supported_formats=SUPPORTED_SERIALIZATION_FORMATS)),
                              error_code=INVALID_PARAMETER_VALUE)

    if os.path.exists(path):
        raise MlflowException(message="Path '{}' already exists".format(path),
                              error_code=RESOURCE_ALREADY_EXISTS)
    os.makedirs(path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    model_data_subpath = "model.pkl"
    _save_model(sk_model=sk_model,
                output_path=os.path.join(path, model_data_subpath),
                serialization_format=serialization_format)

    conda_env_subpath = "conda.yaml"
    if conda_env is None:
        conda_env = get_default_conda_env(
            include_cloudpickle=serialization_format ==
            SERIALIZATION_FORMAT_CLOUDPICKLE)
    elif not isinstance(conda_env, dict):
        with open(conda_env, "r") as f:
            conda_env = yaml.safe_load(f)
    with open(os.path.join(path, conda_env_subpath), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    pyfunc.add_to_model(mlflow_model,
                        loader_module="mlflow.sklearn",
                        model_path=model_data_subpath,
                        env=conda_env_subpath)
    mlflow_model.add_flavor(FLAVOR_NAME,
                            pickled_model=model_data_subpath,
                            sklearn_version=sklearn.__version__,
                            serialization_format=serialization_format)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
Exemplo n.º 6
0
def save_model(path,
               loader_module=None,
               data_path=None,
               code_path=None,
               conda_env=None,
               mlflow_model=None,
               python_model=None,
               artifacts=None,
               signature: ModelSignature = None,
               input_example: ModelInputExample = None,
               **kwargs):
    """
    save_model(path, loader_module=None, data_path=None, code_path=None, conda_env=None,\
               mlflow_model=Model(), python_model=None, artifacts=None)

    Save a Pyfunc model with custom inference logic and optional data dependencies to a path on the
    local filesystem.

    For information about the workflows that this method supports, please see :ref:`"workflows for
    creating custom pyfunc models" <pyfunc-create-custom-workflows>` and
    :ref:`"which workflow is right for my use case?" <pyfunc-create-custom-selecting-workflow>`.
    Note that the parameters for the second workflow: ``loader_module``, ``data_path`` and the
    parameters for the first workflow: ``python_model``, ``artifacts``, cannot be
    specified together.

    :param path: The path to which to save the Python model.
    :param loader_module: The name of the Python module that is used to load the model
                          from ``data_path``. This module must define a method with the prototype
                          ``_load_pyfunc(data_path)``. If not ``None``, this module and its
                          dependencies must be included in one of the following locations:

                          - The MLflow library.
                          - Package(s) listed in the model's Conda environment, specified by
                            the ``conda_env`` parameter.
                          - One or more of the files specified by the ``code_path`` parameter.

    :param data_path: Path to a file or directory containing model data.
    :param code_path: A list of local filesystem paths to Python file dependencies (or directories
                      containing file dependencies). These files are *prepended* to the system
                      path before the model is loaded.
    :param conda_env: Either a dictionary representation of a Conda environment or the path to a
                      Conda environment yaml file. This decsribes the environment this model should
                      be run in. If ``python_model`` is not ``None``, the Conda environment must
                      at least specify the dependencies contained in
                      :func:`get_default_conda_env()`. If ``None``, the default
                      :func:`get_default_conda_env()` environment is added to the
                      model. The following is an *example* dictionary representation of a Conda
                      environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.7.0',
                                'cloudpickle==0.5.8'
                            ]
                        }
    :param mlflow_model: :py:mod:`mlflow.models.Model` configuration to which to add the
                         **python_function** flavor.
    :param python_model: An instance of a subclass of :class:`~PythonModel`. This class is
                         serialized using the CloudPickle library. Any dependencies of the class
                         should be included in one of the following locations:

                            - The MLflow library.
                            - Package(s) listed in the model's Conda environment, specified by
                              the ``conda_env`` parameter.
                            - One or more of the files specified by the ``code_path`` parameter.

                         Note: If the class is imported from another module, as opposed to being
                         defined in the ``__main__`` scope, the defining module should also be
                         included in one of the listed locations.
    :param artifacts: A dictionary containing ``<name, artifact_uri>`` entries. Remote artifact URIs
                      are resolved to absolute filesystem paths, producing a dictionary of
                      ``<name, absolute_path>`` entries. ``python_model`` can reference these
                      resolved entries as the ``artifacts`` property of the ``context`` parameter
                      in :func:`PythonModel.load_context() <mlflow.pyfunc.PythonModel.load_context>`
                      and :func:`PythonModel.predict() <mlflow.pyfunc.PythonModel.predict>`.
                      For example, consider the following ``artifacts`` dictionary::

                        {
                            "my_file": "s3://my-bucket/path/to/my/file"
                        }

                      In this case, the ``"my_file"`` artifact is downloaded from S3. The
                      ``python_model`` can then refer to ``"my_file"`` as an absolute filesystem
                      path via ``context.artifacts["my_file"]``.

                      If ``None``, no artifacts are added to the model.

    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.
    """
    mlflow_model = kwargs.pop('model', mlflow_model)
    if len(kwargs) > 0:
        raise TypeError(
            "save_model() got unexpected keyword arguments: {}".format(kwargs))
    if code_path is not None:
        if not isinstance(code_path, list):
            raise TypeError(
                'Argument code_path should be a list, not {}'.format(
                    type(code_path)))

    first_argument_set = {
        "loader_module": loader_module,
        "data_path": data_path,
    }
    second_argument_set = {
        "artifacts": artifacts,
        "python_model": python_model,
    }
    first_argument_set_specified = any(
        [item is not None for item in first_argument_set.values()])
    second_argument_set_specified = any(
        [item is not None for item in second_argument_set.values()])
    if first_argument_set_specified and second_argument_set_specified:
        raise MlflowException(message=(
            "The following sets of parameters cannot be specified together: {first_set_keys}"
            " and {second_set_keys}. All parameters in one set must be `None`. Instead, found"
            " the following values: {first_set_entries} and {second_set_entries}"
            .format(first_set_keys=first_argument_set.keys(),
                    second_set_keys=second_argument_set.keys(),
                    first_set_entries=first_argument_set,
                    second_set_entries=second_argument_set)),
                              error_code=INVALID_PARAMETER_VALUE)
    elif (loader_module is None) and (python_model is None):
        msg = "Either `loader_module` or `python_model` must be specified. A `loader_module` " \
              "should be a python module. A `python_model` should be a subclass of PythonModel"
        raise MlflowException(message=msg, error_code=INVALID_PARAMETER_VALUE)

    if os.path.exists(path):
        raise MlflowException(message="Path '{}' already exists".format(path),
                              error_code=RESOURCE_ALREADY_EXISTS)
    os.makedirs(path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    if first_argument_set_specified:
        return _save_model_with_loader_module_and_data_path(
            path=path,
            loader_module=loader_module,
            data_path=data_path,
            code_paths=code_path,
            conda_env=conda_env,
            mlflow_model=mlflow_model)
    elif second_argument_set_specified:
        return kiwi.pyfunc.model._save_model_with_class_artifacts_params(
            path=path,
            python_model=python_model,
            artifacts=artifacts,
            conda_env=conda_env,
            code_paths=code_path,
            mlflow_model=mlflow_model)
Exemplo n.º 7
0
def save_model(keras_model,
               path,
               conda_env=None,
               mlflow_model=None,
               custom_objects=None,
               keras_module=None,
               signature: ModelSignature = None,
               input_example: ModelInputExample = None,
               **kwargs):
    """
    Save a Keras model to a path on the local file system.

    :param keras_model: Keras model to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: Either a dictionary representation of a Conda environment or the path to a
                      Conda environment yaml file. If provided, this decsribes the environment
                      this model should be run in. At minimum, it should specify the
                      dependencies contained in :func:`get_default_conda_env()`. If
                      ``None``, the default :func:`get_default_conda_env()` environment is
                      added to the model. The following is an *example* dictionary
                      representation of a Conda environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.7.0',
                                'keras=2.2.4',
                                'tensorflow=1.8.0'
                            ]
                        }
    :param mlflow_model: MLflow model config this flavor is being added to.
    :param custom_objects: A Keras ``custom_objects`` dictionary mapping names (strings) to
                           custom classes or functions associated with the Keras model. MLflow saves
                           these custom layers using CloudPickle and restores them automatically
                           when the model is loaded with :py:func:`mlflow.keras.load_model` and
                           :py:func:`mlflow.pyfunc.load_model`.
    :param keras_module: Keras module to be used to save / load the model
                         (``keras`` or ``tf.keras``). If not provided, MLflow will
                         attempt to infer the Keras module based on the given model.
    :param kwargs: kwargs to pass to ``keras_model.save`` method.

    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.

    .. code-block:: python
        :caption: Example

        import mlflow
        # Build, compile, and train your model
        keras_model = ...
        keras_model_path = ...
        keras_model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"])
        results = keras_model.fit(
            x_train, y_train, epochs=20, batch_size = 128, validation_data=(x_val, y_val))
        # Save the model as an MLflow Model
        mlflow.keras.save_model(keras_model, keras_model_path)
    """
    if keras_module is None:

        def _is_plain_keras(model):
            try:
                # NB: Network is the first parent with save method
                import keras.engine.network
                return isinstance(model, keras.engine.network.Network)
            except ImportError:
                return False

        def _is_tf_keras(model):
            try:
                # NB: Network is not exposed in tf.keras, we check for Model instead.
                import tensorflow.keras.models
                return isinstance(model, tensorflow.keras.models.Model)
            except ImportError:
                return False

        if _is_plain_keras(keras_model):
            keras_module = importlib.import_module("keras")
        elif _is_tf_keras(keras_model):
            keras_module = importlib.import_module("tensorflow.keras")
        else:
            raise MlflowException(
                "Unable to infer keras module from the model, please specify "
                "which keras module ('keras' or 'tensorflow.keras') is to be "
                "used to save and load the model.")
    elif type(keras_module) == str:
        keras_module = importlib.import_module(keras_module)

    # check if path exists
    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException("Path '{}' already exists".format(path))

    # construct new data folder in existing path
    data_subpath = "data"
    data_path = os.path.join(path, data_subpath)
    os.makedirs(data_path)

    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # save custom objects if there are custom objects
    if custom_objects is not None:
        _save_custom_objects(data_path, custom_objects)

    # save keras module spec to path/data/keras_module.txt
    with open(os.path.join(data_path, _KERAS_MODULE_SPEC_PATH), "w") as f:
        f.write(keras_module.__name__)

    # save keras model to path/data/model.h5
    model_subpath = os.path.join(data_subpath, _MODEL_SAVE_PATH)
    model_path = os.path.join(path, model_subpath)
    if path.startswith('/dbfs/'):
        # The Databricks Filesystem uses a FUSE implementation that does not support
        # random writes. It causes an error.
        with tempfile.NamedTemporaryFile(suffix='.h5') as f:
            keras_model.save(f.name, **kwargs)
            f.flush()  # force flush the data
            shutil.copyfile(src=f.name, dst=model_path)
    else:
        keras_model.save(model_path, **kwargs)

    # update flavor info to mlflow_model
    mlflow_model.add_flavor(FLAVOR_NAME,
                            keras_module=keras_module.__name__,
                            keras_version=keras_module.__version__,
                            data=data_subpath)

    # save conda.yaml info to path/conda.yml
    if conda_env is None:
        conda_env = get_default_conda_env(include_cloudpickle=custom_objects
                                          is not None,
                                          keras_module=keras_module)
    elif not isinstance(conda_env, dict):
        with open(conda_env, "r") as f:
            conda_env = yaml.safe_load(f)
    with open(os.path.join(path, _CONDA_ENV_SUBPATH), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # append loader_module, data and env data to mlflow_model
    pyfunc.add_to_model(mlflow_model,
                        loader_module="mlflow.keras",
                        data=data_subpath,
                        env=_CONDA_ENV_SUBPATH)

    # save mlflow_model to path/MLmodel
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
Exemplo n.º 8
0
def save_model(spacy_model,
               path,
               conda_env=None,
               mlflow_model=None,
               signature: ModelSignature = None,
               input_example: ModelInputExample = None):
    """
    Save a spaCy model to a path on the local file system.

    :param spacy_model: spaCy model to be saved.
    :param path: Local path where the model is to be saved.
    :param conda_env: Either a dictionary representation of a Conda environment or the path to a
                      Conda environment yaml file. If provided, this describes the environment
                      this model should be run in. At minimum, it should specify the dependencies
                      contained in :func:`get_default_conda_env()`. If ``None``, the default
                      :func:`get_default_conda_env()` environment is added to the model.
                      The following is an *example* dictionary representation of a Conda
                      environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.7.0',
                                'pip': [
                                    'spacy==2.2.3'
                                ]
                            ]
                        }

    :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.

    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.

    """
    import spacy

    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException(
            "Unable to save MLflow model to {path} - path '{path}' "
            "already exists".format(path=path))

    model_data_subpath = "model.spacy"
    model_data_path = os.path.join(path, model_data_subpath)
    os.makedirs(model_data_path)

    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # Save spacy-model
    spacy_model.to_disk(path=model_data_path)

    conda_env_subpath = "conda.yaml"
    if conda_env is None:
        conda_env = get_default_conda_env()
    elif not isinstance(conda_env, dict):
        with open(conda_env, "r") as f:
            conda_env = yaml.safe_load(f)
    with open(os.path.join(path, conda_env_subpath), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    # Save the pyfunc flavor if at least one text categorizer in spaCy pipeline
    if any([
            isinstance(pipe_component[1], spacy.pipeline.TextCategorizer)
            for pipe_component in spacy_model.pipeline
    ]):
        pyfunc.add_to_model(mlflow_model,
                            loader_module="mlflow.spacy",
                            data=model_data_subpath,
                            env=conda_env_subpath)
    else:
        _logger.warning(
            "Generating only the spacy flavor for the provided spacy model. This means the model "
            "can be loaded back via `mlflow.spacy.load_model`, but cannot be loaded back using "
            "pyfunc APIs like `mlflow.pyfunc.load_model` or via the `mlflow models` CLI commands. "
            "MLflow will only generate the pyfunc flavor for spacy models containing a pipeline "
            "component that is an instance of spacy.pipeline.TextCategorizer.")

    mlflow_model.add_flavor(FLAVOR_NAME,
                            spacy_version=spacy.__version__,
                            data=model_data_subpath)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
Exemplo n.º 9
0
def save_model(tf_saved_model_dir,
               tf_meta_graph_tags,
               tf_signature_def_key,
               path,
               mlflow_model=None,
               conda_env=None,
               signature: ModelSignature = None,
               input_example: ModelInputExample = None):
    """
    Save a *serialized* collection of TensorFlow graphs and variables as an MLflow model
    to a local path. This method operates on TensorFlow variables and graphs that have been
    serialized in TensorFlow's ``SavedModel`` format. For more information about ``SavedModel``
    format, see the TensorFlow documentation:
    https://www.tensorflow.org/guide/saved_model#save_and_restore_models.

    :param tf_saved_model_dir: Path to the directory containing serialized TensorFlow variables and
                               graphs in ``SavedModel`` format.
    :param tf_meta_graph_tags: A list of tags identifying the model's metagraph within the
                               serialized ``SavedModel`` object. For more information, see the
                               ``tags`` parameter of the
                               ``tf.saved_model.builder.savedmodelbuilder`` method.
    :param tf_signature_def_key: A string identifying the input/output signature associated with the
                                 model. This is a key within the serialized ``savedmodel``
                                 signature definition mapping. For more information, see the
                                 ``signature_def_map`` parameter of the
                                 ``tf.saved_model.builder.savedmodelbuilder`` method.
    :param path: Local path where the MLflow model is to be saved.
    :param mlflow_model: MLflow model configuration to which to add the ``tensorflow`` flavor.
    :param conda_env: Either a dictionary representation of a Conda environment or the path to a
                      Conda environment yaml file. If provided, this decsribes the environment
                      this model should be run in. At minimum, it should specify the dependencies
                      contained in :func:`get_default_conda_env()`. If ``None``, the default
                      :func:`get_default_conda_env()` environment is added to the model. The
                      following is an *example* dictionary representation of a Conda environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.7.0',
                                'tensorflow=1.8.0'
                            ]
                        }
    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.

    """
    _logger.info(
        "Validating the specified TensorFlow model by attempting to load it in a new TensorFlow"
        " graph...")
    _validate_saved_model(tf_saved_model_dir=tf_saved_model_dir,
                          tf_meta_graph_tags=tf_meta_graph_tags,
                          tf_signature_def_key=tf_signature_def_key)
    _logger.info("Validation succeeded!")

    if os.path.exists(path):
        raise MlflowException("Path '{}' already exists".format(path),
                              DIRECTORY_NOT_EMPTY)
    os.makedirs(path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)
    root_relative_path = _copy_file_or_tree(src=tf_saved_model_dir,
                                            dst=path,
                                            dst_dir=None)
    model_dir_subpath = "tfmodel"
    shutil.move(os.path.join(path, root_relative_path),
                os.path.join(path, model_dir_subpath))

    conda_env_subpath = "conda.yaml"
    if conda_env is None:
        conda_env = get_default_conda_env()
    elif not isinstance(conda_env, dict):
        with open(conda_env, "r") as f:
            conda_env = yaml.safe_load(f)
    with open(os.path.join(path, conda_env_subpath), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)

    mlflow_model.add_flavor(FLAVOR_NAME,
                            saved_model_dir=model_dir_subpath,
                            meta_graph_tags=tf_meta_graph_tags,
                            signature_def_key=tf_signature_def_key)
    pyfunc.add_to_model(mlflow_model,
                        loader_module="mlflow.tensorflow",
                        env=conda_env_subpath)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
Exemplo n.º 10
0
def save_model(gluon_model, path, mlflow_model=None, conda_env=None,
               signature: ModelSignature = None, input_example: ModelInputExample = None):
    """
    Save a Gluon model to a path on the local file system.

    :param gluon_model: Gluon model to be saved. Must be already hybridized.
    :param path: Local path where the model is to be saved.
    :param mlflow_model: MLflow model config this flavor is being added to.
    :param conda_env: Either a dictionary representation of a Conda environment or
                      the path to a Conda environment yaml file.
                      If provided, this decribes the environment this model should be
                      run in. At minimum, it should specify the dependencies
                      contained in :func:`get_default_conda_env()`. If ``None``, the default
                      :func:`mlflow.gluon.get_default_conda_env()` environment is added to
                      the model. The following is an *example* dictionary representation of a
                      Conda environment::

                        {
                            'name': 'mlflow-env',
                            'channels': ['defaults'],
                            'dependencies': [
                                'python=3.7.0',
                                'mxnet=1.5.0'
                            ]
                        }

    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.



    .. code-block:: python
        :caption: Example

        from mxnet.gluon import Trainer
        from mxnet.gluon.contrib import estimator
        from mxnet.gluon.loss import SoftmaxCrossEntropyLoss
        from mxnet.gluon.nn import HybridSequential
        from mxnet.metric import Accuracy
        import mlflow
        # Build, compile, and train your model
        gluon_model_path = ...
        net = HybridSequential()
        with net.name_scope():
            ...
        net.hybridize()
        net.collect_params().initialize()
        softmax_loss = SoftmaxCrossEntropyLoss()
        trainer = Trainer(net.collect_params())
        est = estimator.Estimator(net=net, loss=softmax_loss, metrics=Accuracy(), trainer=trainer)
        est.fit(train_data=train_data, epochs=100, val_data=validation_data)
        # Save the model as an MLflow Model
        mlflow.gluon.save_model(net, gluon_model_path)
    """
    path = os.path.abspath(path)
    if os.path.exists(path):
        raise MlflowException("Path '{}' already exists".format(path))
    data_subpath = "data"
    data_path = os.path.join(path, data_subpath)
    os.makedirs(data_path)
    if mlflow_model is None:
        mlflow_model = Model()
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)

    # The epoch argument of the export method does not play any role in selecting
    # a specific epoch's paramaters, and is there only for display purposes.
    gluon_model.export(os.path.join(data_path, _MODEL_SAVE_PATH))
    with open(os.path.join(path, "architecture.txt"), "w") as fp:
        fp.write(str(gluon_model))
    conda_env_subpath = "conda.yaml"
    if conda_env is None:
        conda_env = get_default_conda_env()
    elif not isinstance(conda_env, dict):
        with open(conda_env, "r") as f:
            conda_env = yaml.safe_load(f)
    with open(os.path.join(path, conda_env_subpath), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)
    pyfunc.add_to_model(mlflow_model, loader_module="mlflow.gluon", env=conda_env_subpath)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
Exemplo n.º 11
0
def save_model(spark_model, sample_input, path, mlflow_model=Model(),
               signature: ModelSignature = None, input_example: ModelInputExample = None):
    """
    Save a Spark MLlib PipelineModel in MLeap format at a local path.
    The saved model will have the MLeap flavor.

    NOTE:

        You cannot load the MLeap model flavor in Python; you must download it using the
        Java API method ``downloadArtifacts(String runId)`` and load the model
        using the method ``MLeapLoader.loadPipeline(String modelRootPath)``.

    :param spark_model: Spark PipelineModel to be saved. This model must be MLeap-compatible and
                  cannot contain any custom transformers.
    :param sample_input: Sample PySpark DataFrame input that the model can evaluate. This is
                         required by MLeap for data schema inference.
    :param path: Local path where the model is to be saved.
    :param mlflow_model: :py:mod:`mlflow.models.Model` to which this flavor is being added.

    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset) and valid
                      model output (e.g. model predictions generated on the training dataset),
                      for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        signature = infer_signature(train, model.predict(train))
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.

    :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`
                      describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
                      The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
                      from datasets with valid model input (e.g. the training dataset with target
                      column omitted) and valid model output (e.g. model predictions generated on
                      the training dataset), for example:

                      .. code-block:: python

                        from mlflow.models.signature import infer_signature
                        train = df.drop_column("target_label")
                        predictions = ... # compute model predictions
                        signature = infer_signature(train, predictions)
    :param input_example: (Experimental) Input example provides one or several instances of valid
                          model input. The example can be used as a hint of what data to feed the
                          model. The given example will be converted to a Pandas DataFrame and then
                          serialized to json using the Pandas split-oriented format. Bytes are
                          base64-encoded.


    """
    add_to_model(mlflow_model=mlflow_model, path=path, spark_model=spark_model,
                 sample_input=sample_input)
    if signature is not None:
        mlflow_model.signature = signature
    if input_example is not None:
        _save_example(mlflow_model, input_example, path)
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))