def test_log_model_calls_register_model(sklearn_knn_model,
                                        main_scoped_model_class):
    register_model_patch = mock.patch("mlflow.register_model")
    with register_model_patch:
        sklearn_artifact_path = "sk_model_no_run"
        with kiwi.start_run():
            kiwi.sklearn.log_model(sk_model=sklearn_knn_model,
                                   artifact_path=sklearn_artifact_path)
            sklearn_model_uri = "runs:/{run_id}/{artifact_path}".format(
                run_id=kiwi.active_run().info.run_id,
                artifact_path=sklearn_artifact_path)

        def test_predict(sk_model, model_input):
            return sk_model.predict(model_input) * 2

        pyfunc_artifact_path = "pyfunc_model"
        assert kiwi.active_run() is None
        kiwi.pyfunc.log_model(
            artifact_path=pyfunc_artifact_path,
            artifacts={"sk_model": sklearn_model_uri},
            python_model=main_scoped_model_class(test_predict),
            registered_model_name="AdsModel1")
        model_uri = "runs:/{run_id}/{artifact_path}".format(
            run_id=kiwi.active_run().info.run_id,
            artifact_path=pyfunc_artifact_path)
        kiwi.register_model.assert_called_once_with(model_uri, "AdsModel1")
        kiwi.end_run()
def test_pyfunc_model_log_load_no_active_run(sklearn_knn_model,
                                             main_scoped_model_class,
                                             iris_data):
    sklearn_artifact_path = "sk_model_no_run"
    with kiwi.start_run():
        kiwi.sklearn.log_model(sk_model=sklearn_knn_model,
                               artifact_path=sklearn_artifact_path)
        sklearn_model_uri = "runs:/{run_id}/{artifact_path}".format(
            run_id=kiwi.active_run().info.run_id,
            artifact_path=sklearn_artifact_path)

    def test_predict(sk_model, model_input):
        return sk_model.predict(model_input) * 2

    pyfunc_artifact_path = "pyfunc_model"
    assert kiwi.active_run() is None
    kiwi.pyfunc.log_model(artifact_path=pyfunc_artifact_path,
                          artifacts={"sk_model": sklearn_model_uri},
                          python_model=main_scoped_model_class(test_predict))
    pyfunc_model_uri = "runs:/{run_id}/{artifact_path}".format(
        run_id=kiwi.active_run().info.run_id,
        artifact_path=pyfunc_artifact_path)
    loaded_pyfunc_model = kiwi.pyfunc.load_pyfunc(model_uri=pyfunc_model_uri)
    np.testing.assert_array_equal(
        loaded_pyfunc_model.predict(iris_data[0]),
        test_predict(sk_model=sklearn_knn_model, model_input=iris_data[0]))
    kiwi.end_run()
Exemplo n.º 3
0
def test_model_log(h2o_iris_model):
    h2o_model = h2o_iris_model.model
    old_uri = kiwi.get_tracking_uri()
    # should_start_run tests whether or not calling log_model() automatically starts a run.
    for should_start_run in [False, True]:
        with TempDir(chdr=True, remove_on_exit=True):
            try:
                artifact_path = "gbm_model"
                kiwi.set_tracking_uri("test")
                if should_start_run:
                    kiwi.start_run()
                kiwi.h2o.log_model(h2o_model=h2o_model,
                                   artifact_path=artifact_path)
                model_uri = "runs:/{run_id}/{artifact_path}".format(
                    run_id=kiwi.active_run().info.run_id,
                    artifact_path=artifact_path)

                # Load model
                h2o_model_loaded = kiwi.h2o.load_model(model_uri=model_uri)
                assert all(
                    h2o_model_loaded.predict(h2o_iris_model.inference_data).
                    as_data_frame() == h2o_model.predict(
                        h2o_iris_model.inference_data).as_data_frame())
            finally:
                kiwi.end_run()
                kiwi.set_tracking_uri(old_uri)
Exemplo n.º 4
0
def test_sparkml_estimator_model_log(tmpdir, spark_model_estimator):
    # Print the coefficients and intercept for multinomial logistic regression
    old_tracking_uri = kiwi.get_tracking_uri()
    cnt = 0
    # should_start_run tests whether or not calling log_model() automatically starts a run.
    for should_start_run in [False, True]:
        for dfs_tmp_dir in [None, os.path.join(str(tmpdir), "test")]:
            print("should_start_run =", should_start_run, "dfs_tmp_dir =", dfs_tmp_dir)
            try:
                tracking_dir = os.path.abspath(str(tmpdir.join("mlruns")))
                kiwi.set_tracking_uri("file://%s" % tracking_dir)
                if should_start_run:
                    kiwi.start_run()
                artifact_path = "model%d" % cnt
                cnt += 1
                sparkm.log_model(
                    artifact_path=artifact_path,
                    spark_model=spark_model_estimator.model,
                    dfs_tmpdir=dfs_tmp_dir)
                model_uri = "runs:/{run_id}/{artifact_path}".format(
                    run_id=kiwi.active_run().info.run_id,
                    artifact_path=artifact_path)

                # test reloaded model
                reloaded_model = sparkm.load_model(model_uri=model_uri, dfs_tmpdir=dfs_tmp_dir)
                preds_df = reloaded_model.transform(spark_model_estimator.spark_df)
                preds = [x.prediction for x in preds_df.select("prediction").collect()]
                assert spark_model_estimator.predictions == preds
            finally:
                kiwi.end_run()
                kiwi.set_tracking_uri(old_tracking_uri)
                x = dfs_tmp_dir or sparkm.DFS_TMP
                shutil.rmtree(x)
                shutil.rmtree(tracking_dir)
Exemplo n.º 5
0
def test_autologging_does_not_start_run(spark_session, format_to_file_path):
    try:
        kiwi.spark.autolog()
        data_format = list(format_to_file_path.keys())[0]
        file_path = format_to_file_path[data_format]
        df = spark_session.read.format(data_format).option("header", "true"). \
            option("inferSchema", "true").load(file_path)
        df.collect()
        time.sleep(1)
        active_run = kiwi.active_run()
        assert active_run is None
        assert len(kiwi.search_runs()) == 0
    finally:
        kiwi.end_run()
Exemplo n.º 6
0
def test_delete_tag():
    """
    Confirm that fluent API delete tags actually works
    :return:
    """
    kiwi.set_tag('a', 'b')
    run = MlflowClient().get_run(kiwi.active_run().info.run_id)
    print(run.info.run_id)
    assert 'a' in run.data.tags
    kiwi.delete_tag('a')
    run = MlflowClient().get_run(kiwi.active_run().info.run_id)
    assert 'a' not in run.data.tags
    with pytest.raises(MlflowException):
        kiwi.delete_tag('a')
    with pytest.raises(MlflowException):
        kiwi.delete_tag('b')
    kiwi.end_run()
Exemplo n.º 7
0
    def fit(self, *args, **kwargs):
        if not kiwi.active_run():
            auto_end_run = True
        else:
            auto_end_run = False

        original = gorilla.get_original_attribute(Estimator, "fit")
        if len(args) >= 4:
            l = list(args)
            l[3] += [__MLflowGluonCallback()]
            args = tuple(l)
        elif "event_handlers" in kwargs:
            kwargs["event_handlers"] += [__MLflowGluonCallback()]
        else:
            kwargs["event_handlers"] = [__MLflowGluonCallback()]
        result = original(self, *args, **kwargs)
        if auto_end_run:
            kiwi.end_run()
        return result
Exemplo n.º 8
0
def test_model_log_evaluate_pyfunc_format(onnx_model, data, predicted):
    import onnx
    import kiwi.onnx
    x, y = data
    # should_start_run tests whether or not calling log_model() automatically starts a run.
    for should_start_run in [False, True]:
        try:
            if should_start_run:
                kiwi.start_run()
            artifact_path = "onnx_model"
            kiwi.onnx.log_model(onnx_model=onnx_model, artifact_path=artifact_path)
            model_uri = "runs:/{run_id}/{artifact_path}".format(
                run_id=kiwi.active_run().info.run_id,
                artifact_path=artifact_path)

            # Loading pyfunc model
            pyfunc_loaded = kiwi.pyfunc.load_pyfunc(model_uri=model_uri)
            assert np.allclose(pyfunc_loaded.predict(x).values, predicted,
                               rtol=1e-05, atol=1e-05)
        finally:
            kiwi.end_run()
Exemplo n.º 9
0
def test_model_log(model, data, predicted):
    x, _ = data
    # should_start_run tests whether or not calling log_model() automatically starts a run.
    for should_start_run in [False, True]:
        try:
            if should_start_run:
                kiwi.start_run()
            artifact_path = "keras_model"
            kiwi.keras.log_model(model, artifact_path=artifact_path)
            model_uri = "runs:/{run_id}/{artifact_path}".format(
                run_id=kiwi.active_run().info.run_id,
                artifact_path=artifact_path)

            # Load model
            model_loaded = kiwi.keras.load_model(model_uri=model_uri)
            assert all(model_loaded.predict(x) == predicted)

            # Loading pyfunc model
            pyfunc_loaded = kiwi.pyfunc.load_model(model_uri=model_uri)
            assert all(pyfunc_loaded.predict(x).values == predicted)
        finally:
            kiwi.end_run()
Exemplo n.º 10
0
def test_model_log(onnx_model, onnx_custom_env):
    # pylint: disable=unused-argument

    import onnx
    import kiwi.onnx
    # should_start_run tests whether or not calling log_model() automatically starts a run.
    for should_start_run in [False, True]:
        try:
            if should_start_run:
                kiwi.start_run()
            artifact_path = "onnx_model"
            kiwi.onnx.log_model(onnx_model=onnx_model,
                                artifact_path=artifact_path,
                                conda_env=onnx_custom_env)
            model_uri = "runs:/{run_id}/{artifact_path}".format(
                run_id=kiwi.active_run().info.run_id,
                artifact_path=artifact_path)

            # Load model
            onnx.checker.check_model = mock.Mock()
            kiwi.onnx.load_model(model_uri)
            assert onnx.checker.check_model.called
        finally:
            kiwi.end_run()
Exemplo n.º 11
0
def test_model_log_load_no_active_run(sklearn_knn_model, iris_data, tmpdir):
    sk_model_path = os.path.join(str(tmpdir), "knn.pkl")
    with open(sk_model_path, "wb") as f:
        pickle.dump(sklearn_knn_model, f)

    pyfunc_artifact_path = "pyfunc_model"
    assert kiwi.active_run() is None
    kiwi.pyfunc.log_model(artifact_path=pyfunc_artifact_path,
                          data_path=sk_model_path,
                          loader_module=os.path.basename(__file__)[:-3],
                          code_path=[__file__])
    pyfunc_model_path = _download_artifact_from_uri(
        "runs:/{run_id}/{artifact_path}".format(
            run_id=kiwi.active_run().info.run_id,
            artifact_path=pyfunc_artifact_path))

    model_config = Model.load(os.path.join(pyfunc_model_path, "MLmodel"))
    assert kiwi.pyfunc.FLAVOR_NAME in model_config.flavors
    assert kiwi.pyfunc.PY_VERSION in model_config.flavors[
        kiwi.pyfunc.FLAVOR_NAME]
    reloaded_model = kiwi.pyfunc.load_pyfunc(pyfunc_model_path)
    np.testing.assert_array_equal(sklearn_knn_model.predict(iris_data[0]),
                                  reloaded_model.predict(iris_data[0]))
    kiwi.end_run()
Exemplo n.º 12
0
def manual_run(request):
    if request.param:
        kiwi.start_run()
    yield
    kiwi.end_run()
Exemplo n.º 13
0
def start_run():
    kiwi.start_run()
    yield
    kiwi.end_run()
Exemplo n.º 14
0
def manual_run(request, tracking_uri_mock):
    if request.param:
        kiwi.start_run()
    yield
    kiwi.end_run()