Exemplo n.º 1
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        np.seterr(invalid='raise')

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          calculatetransfer_init,
                                          prefix=calculatetransfer_prefix)

        print self.params["powerfile_in"], "->", self.params["powerfile_out"]

        self.stats_in = h5py.File(self.params["powerfile_in"], "r")
        self.stats_out = h5py.File(self.params["powerfile_out"], "r")
        self.treatments_in = self.stats_in.keys()
        self.treatments_out = self.stats_out.keys()
        self.multiplier = self.params["input_multiplier"]

        # If this is measuring the mode cleaning transfer function, it will be
        # with respect to the 0modes removed case. Note that map+sim (with zero
        # modes removed) x sim is quite noisy, so we really don't want to use
        # the zero-mode case of the plussim cleaning runs to estimate this.
        # Instead, use signal-only sims for the 0mode reference.
        print "AggregateStatistics: input treatments: ", self.treatments_in
        print "AggregateStatistics: output treatments: ", self.treatments_out

        if self.treatments_in[0] != "0modes":
            print "Transfer functions must be wrt only 0modes"
            return
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict

        if parameter_file:
            self.params = parse_ini.parse(parameter_file, crosspowertheoryparams_init,
                                          prefix=crosspowertheoryprefix)
            print self.params
Exemplo n.º 3
0
def call_phys_space_run(cube1_file, cube2_file,
                        inifile=None):
    """Directly call the power spectral estimation on some physical vol"""
    params_init = {
        "unitless": True,
        "return_3d": False,
        "truncate": False,
        "window": "blackman",
        "bins": [0.00765314, 2.49977141, 35]
                   }
    prefix = 'xs_'

    params = parse_ini.parse(inifile, params_init, prefix=prefix)
    if inifile is None:
        print "WARNING: no ini file for pwrspec estimation"

    bparam = params['bins']
    bins = np.logspace(math.log10(bparam[0]),
                       math.log10(bparam[1]),
                       num=bparam[2], endpoint=True)

    retval = pe.calculate_xspec_file(cube1_file, cube2_file, bins,
                    weight1_file=None, weight2_file=None,
                    truncate=params['truncate'], window=params['window'],
                    return_3d=params['return_3d'], unitless=params['unitless'])

    return retval
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          autonoiseweightparams_init,
                                          prefix=autonoiseweightprefix)
def wrap_batch_single_crosspwr(inifile, generate=False, outdir="./plots/"):
    r"""Wrapper to the single crosspwr calculator
    """
    params_init = {"left_mapkey": "some preparation of a map, cleaned",
                   "right_simkey": "a simulation to cross it with",
                   "right_weightkey": "weight to use for that sim",
                   "multiplier": "multiply the 1D and 2D spectra",
                   "spec_ini": "ini file for the spectral estimation",
                   "output_tag": "tag identifying the output somehow"}
    prefix="csc_"

    params = parse_ini.parse(inifile, params_init, prefix=prefix)
    print params

    output_tag = "%s_%s" % (params['left_mapkey'], params['output_tag'])
    output_root = "%s/%s/" % (outdir, output_tag)

    if generate:
        output_tag = None

    print output_root, output_tag
    file_tools.mkparents(output_root)
    parse_ini.write_params(params, output_root + 'params.ini',
                           prefix=prefix)

    datapath_db = data_paths.DataPath()

    return batch_single_crosspwr(params["left_mapkey"],
                                 params["right_simkey"],
                                 params["right_weightkey"],
                                 multiplier=params["multiplier"],
                                 inifile=params["spec_ini"],
                                 datapath_db=datapath_db,
                                 outdir=output_root,
                                 output_tag=output_tag)
Exemplo n.º 6
0
	def __init__(self, parameter_file_or_dict=None, feedback=2):
		# Read in the parameters.
		self.params = parse_ini.parse(parameter_file_or_dict, params_init, prefix=prefix, feedback=feedback)

		self.feedback=feedback

		self.plot = bool(self.params['plot'])
Exemplo n.º 7
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          autopowerparams_init,
                                          prefix=autopowerprefix)
Exemplo n.º 8
0
    def __init__(self, parameter_file_or_dict=None):
        # recordkeeping
        self.pairs = {}
        self.pairs_nosim = {}
        self.pairlist = []
        self.noisefiledict = {}
        self.datapath_db = dp.DataPath()

        self.params = parse_ini.parse(parameter_file_or_dict,
                                      params_init,
                                      prefix=prefix)

        self.freq_list = sp.array(self.params['freq_list'], dtype=int)
        self.lags = sp.array(self.params['lags'])
        self.output_root = self.datapath_db.fetch(self.params['output_root'],
                                                  intend_write=True)

        if self.params['SVD_root']:
            self.SVD_root = self.datapath_db.fetch(self.params['SVD_root'],
                                                   intend_write=True)
            print "WARNING: using %s to clean (intended?)" % self.SVD_root
        else:
            self.SVD_root = self.output_root

        # Write parameter file.
        kiyopy.utils.mkparents(self.output_root)
        parse_ini.write_params(self.params,
                               self.output_root + 'params.ini',
                               prefix=prefix)
Exemplo n.º 9
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          physsimparams_init,
                                          prefix=physsimprefix)
Exemplo n.º 10
0
 def __init__(self, parameter_file_or_dict=None, feedback=2):
     # Read the parameter file, store in dictionary named parameters.
     self.params = parse_ini.parse(parameter_file_or_dict,
                                   params_init,
                                   prefix=prefix,
                                   feedback=feedback)
     self.feedback = feedback
Exemplo n.º 11
0
 def __init__(self, parameter_file_or_dict=None, feedback=2):
     # Read in the parameters.
     self.params = parse_ini.parse(parameter_file_or_dict,
                                   params_init,
                                   prefix=prefix,
                                   feedback=feedback)
     self.feedback = feedback
Exemplo n.º 12
0
def execute(pipe_file_or_dict, feedback=2) :
    """Execute all the modules listed in the input file."""

    params, module_params = parse_ini.parse(pipe_file_or_dict, params_init, 
                                       prefix='pipe_',return_undeclared=True,
                                       feedback=feedback)
    
    for module in params['modules'] :
        # Module is either the python object that should be executed, or a
        # tuple, with the first element being the module and the second element
        # being a prefix replacement of the form ('p1_', 'p2_').  Before
        # executing the module, we rename all parameters begining with 'p1_'
        # to 'p2_'.
        if isinstance(module, tuple) :
            mod =  module[0]
            pars = dict(module_params)
            old_prefix = module[1][0]
            n = len(old_prefix)
            new_prefix = module[1][1]
            for key, value in module_params.iteritems() :
                if key[0:n] == old_prefix :
                    pars[new_prefix + key[n:]] = value
        else :
            mod = module
            pars = module_params
        if feedback > 1 :
            print 'Excuting analysis module: ' + str(mod)
        mod(pars, feedback=feedback).execute(params['processes'])
Exemplo n.º 13
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          params_init,
                                          prefix=prefix)

        self.output_file = self.params['output_file']
        self.delta_temp_file = self.params['delta_temp_file']
        self.total_integration = self.params['total_integration']
        self.weight_map = algebra.make_vect(
            algebra.load(self.params['weight_file']))

        self.max_stdev = self.params['max_stdev']

        # set the random seed
        if (self.params['seed'] < 0):
            # The usual seed is not fine enough for parallel jobs
            randsource = open("/dev/random", "rb")
            self.seed = struct.unpack("I", randsource.read(4))[0]
            #self.seed = abs(long(outfile_physical.__hash__()))
        else:
            self.seed = self.params['seed']

        random.seed(self.seed)
Exemplo n.º 14
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        np.seterr(invalid='raise')

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          calculatetransfer_init,
                                          prefix=calculatetransfer_prefix)

        print self.params["powerfile_in"], "->", self.params["powerfile_out"]

        self.stats_in = h5py.File(self.params["powerfile_in"], "r")
        self.stats_out = h5py.File(self.params["powerfile_out"], "r")
        self.treatments_in = self.stats_in.keys()
        self.treatments_out = self.stats_out.keys()
        self.multiplier = self.params["input_multiplier"]

        # If this is measuring the mode cleaning transfer function, it will be
        # with respect to the 0modes removed case. Note that map+sim (with zero
        # modes removed) x sim is quite noisy, so we really don't want to use
        # the zero-mode case of the plussim cleaning runs to estimate this.
        # Instead, use signal-only sims for the 0mode reference.
        print "AggregateStatistics: input treatments: ", self.treatments_in
        print "AggregateStatistics: output treatments: ", self.treatments_out

        if self.treatments_in[0] != "0modes":
            print "Transfer functions must be wrt only 0modes"
            return
Exemplo n.º 15
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        # recordkeeping
        self.pairs = {}
        self.pairs_parallel_track = {}
        self.pairlist = []
        self.datapath_db = dp.DataPath()

        self.params = params_dict
        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          params_init,
                                          prefix=prefix)

        self.freq_list = sp.array(self.params['freq_list'], dtype=int)
        self.tack_on_input = self.params['tack_on_input']
        self.output_root = self.datapath_db.fetch(
            self.params['output_root'], tack_on=self.params['tack_on_output'])

        #self.output_root = self.params['output_root']
        print "foreground cleaning writing to output root", self.output_root

        if not os.path.isdir(self.output_root):
            os.mkdir(self.output_root)

        if self.params['svd_filename'] is not None:
            self.svd_filename = self.params['svd_filename']
            print "WARNING: using %s to clean (intended?)" % self.svd_filename
        else:
            self.svd_filename = self.output_root + "/" + "SVD.hd5"

        # Write parameter file.
        parse_ini.write_params(self.params,
                               self.output_root + 'params.ini',
                               prefix=prefix)
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        # recordkeeping
        self.pairs = {}
        self.pairs_parallel_track = {}
        self.pairlist = []
        self.datapath_db = dp.DataPath()

        self.params = params_dict
        if parameter_file:
            self.params = parse_ini.parse(parameter_file, params_init,
                                          prefix=prefix)

        self.freq_list = sp.array(self.params['freq_list'], dtype=int)
        self.tack_on_input = self.params['tack_on_input']
        self.output_root = self.datapath_db.fetch(self.params['output_root'],
                                            tack_on=self.params['tack_on_output'])

        #self.output_root = self.params['output_root']
        print "foreground cleaning writing to output root", self.output_root

        if not os.path.isdir(self.output_root):
            os.mkdir(self.output_root)

        if self.params['SVD_root']:
            self.SVD_root = self.datapath_db.fetch(self.params['SVD_root'],
                                                   intend_write=True)
            print "WARNING: using %s to clean (intended?)" % self.SVD_root
        else:
            self.SVD_root = self.output_root

        # Write parameter file.
        parse_ini.write_params(self.params, self.output_root + 'params.ini',
                               prefix=prefix)
Exemplo n.º 17
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          crosspowertheoryparams_init,
                                          prefix=crosspowertheoryprefix)
            print self.params
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        self.datapath_db = dp.DataPath()

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          singlephysicalsim_init,
                                          prefix=singlephysicalsim_prefix)
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        self.datapath_db = dp.DataPath()

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          cleanup_init,
                                          prefix=cleanup_prefix)
Exemplo n.º 20
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        np.seterr(invalid='raise')

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          aggregatesummary_init,
                                          prefix=aggregatesummary_prefix)
Exemplo n.º 21
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        np.seterr(invalid='raise')

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          aggregatesummary_init,
                                          prefix=aggregatesummary_prefix)
Exemplo n.º 22
0
    def __init__(self, parameter_file_or_dict=None, feedback=2):

        # Read in the parameters.
        self.params, self.task_params = parse_ini.parse(parameter_file_or_dict, self.params_init, prefix=self.prefix, return_undeclared=True, feedback=feedback)
        self.tasks = self.params['modules']

        # set environment var
        os.environ['TL_OUTPUT'] = self.params['output_dir'] + '/'
Exemplo n.º 23
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        self.datapath_db = dp.DataPath()

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          subtractmap_init,
                                          prefix=subtractmap_prefix)
Exemplo n.º 24
0
 def __init__(self, parameter_file_or_dict=None, feedback=2) :
     self.feedback = feedback
     
     # Read in the parameters.  Parameters can be passed as a dictionary or
     # a file name.  If the input is 'None' then all parameters revert to
     # the default.
     self.params = parse_ini.parse(parameter_file_or_dict, params_init,
                                   prefix=prefix,
                                   checking=10*self.feedback + 2)
Exemplo n.º 25
0
 def __init__(self, parameter_file_or_dict=None, feedback=2):
     # Only have the first node report.
     rank = comm.Get_rank()
     if rank == 0:
         pass
     else:
         feedback = 0
     # Read in the parameters.
     self.params = parse_ini.parse(parameter_file_or_dict, params_init, prefix=prefix, feedback=feedback)
     self.feedback = feedback
Exemplo n.º 26
0
 def __init__(self, parameter_file_or_dict=None, feedback=2) :
     self.feedback = feedback
     
     # Add any parameters added by any class that inherits from this one.
     params_init = dict(base_params)
     params_init.update(self.params_init)
     
     # Read in the parameters.
     self.params = parse_ini.parse(parameter_file_or_dict, params_init,
                                   prefix=self.prefix, feedback=feedback)
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        self.datapath_db = dp.DataPath()

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          gbtdataautopower_init,
                                          prefix=gbtdataautopower_prefix)

        self.freq_list = np.array(self.params['freq_list'], dtype=int)
Exemplo n.º 28
0
    def __init__(self, parameter_file_or_dict=None, feedback=2):
        self.feedback = feedback

        # Read in the parameters.  Parameters can be passed as a dictionary or
        # a file name.  If the input is 'None' then all parameters revert to
        # the default.
        self.params = parse_ini.parse(parameter_file_or_dict,
                                      params_init,
                                      prefix=prefix,
                                      checking=10 * self.feedback + 2)
Exemplo n.º 29
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        if parameter_file:
            self.params = parse_ini.parse(parameter_file, params_init,
                                          prefix=prefix)

        self.template_key = self.params['template_key']
        self.output_key = self.params['output_key']
        self.total_integration = self.params['total_integration']
        self.scenario = self.params['scenario']
        self.refinement = self.params['refinement']
        self.multiplier = self.params['multiplier']
        self.tack_on = self.params['tack_on']

        # set the random seed
        if (self.params['seed'] < 0):
            print "no seed given; generating one (are you sure?)"
            # The usual seed is not fine enough for parallel jobs
            randsource = open("/dev/random", "rb")
            self.seed = struct.unpack("I", randsource.read(4))[0]
            #self.seed = abs(long(outfile_physical.__hash__()))
        else:
            self.seed = self.params['seed']

        random.seed(self.seed)

        self.datapath_db = data_paths.DataPath()

        self.input_weight_maps = self.return_maplist(self.template_key,
                                                     "noise_weight")

        self.output_weight_maps = self.return_maplist(self.output_key,
                                                      "noise_weight",
                                                      tack_on=self.tack_on)

        self.output_maps = self.return_maplist(self.output_key,
                                               "clean_map",
                                               tack_on=self.tack_on)

        self.output_delta_thermal = []
        self.output_thermal = []
        for mapfile in self.output_maps:
            basename = os.path.splitext(mapfile)[0]
            self.output_delta_thermal.append(basename + "_deltat.npy")
            self.output_thermal.append(basename + "_thermal.npy")

        self.output_signal = "gaussian_signal_simulation.npy"

        print "input weight maps: ", self.input_weight_maps
        print "output weight maps: ", self.output_weight_maps
        self.output_root = os.path.dirname(self.output_weight_maps[0])
        self.output_root += "/"
        print "output directory: ", self.output_root
        if not os.path.isdir(self.output_root):
            os.mkdir(self.output_root)
Exemplo n.º 30
0
    def __init__(self, parameter_file_or_dict=None):
        # Read in the parameters.
        self.params = parse_ini.parse(parameter_file_or_dict, params_init,
                                      prefix=prefix)

        # main derived quantities:
        self.pairs = None
        self.corr_std = None
        self.fore_pairs = None
        self.svd_info_list = None
        self.corr_final = None
Exemplo n.º 31
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        np.seterr(invalid='raise')

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          subtractmap_init,
                                          prefix=subtractmap_prefix)

        print self.params["plussim_file"], "-", self.params["mappower_file"]
        print "writing to ", self.params["output_file"]
    def __init__(self, parameter_file_or_dict=None):
        # Read in the parameters.
        self.params = parse_ini.parse(parameter_file_or_dict, params_init,
                                      prefix=prefix)

        # main derived quantities:
        self.pairs = None
        self.corr_std = None
        self.fore_pairs = None
        self.svd_info_list = None
        self.corr_final = None
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        self.datapath_db = dp.DataPath()

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          crosspowersim_init,
                                          prefix=crosspowersim_prefix)

        print self.params
        self.freq_list = np.array(self.params['freq_list'], dtype=int)
Exemplo n.º 34
0
def execute(pipe_file_or_dict, feedback=0) :
	"""Execute all the modules listed in the input file."""
	
	params, module_params = parse_ini.parse(pipe_file_or_dict, params_init, 
	                                   prefix='pipe_',return_undeclared=True,
	                                   feedback=feedback)
	
	#print rank
	for module in params['modules'] :
		if feedback > 1 :
			print 'Excuting analysis module: ' + str(module)
		module(module_params, feedback=feedback).execute(params['processes'])
Exemplo n.º 35
0
    def __init__(self, parameter_file_or_dict=None, feedback=2):
        self.feedback = feedback

        # Add any parameters added by any class that inherits from this one.
        params_init = dict(base_params)
        params_init.update(self.params_init)

        # Read in the parameters.
        self.params = parse_ini.parse(parameter_file_or_dict,
                                      params_init,
                                      prefix=self.prefix,
                                      feedback=feedback)
Exemplo n.º 36
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        self.datapath_db = dp.DataPath()

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          calc_mixing_init,
                                          prefix=calc_mixing_prefix)

        bin_spec = self.params["bins"]
        self.bins = np.logspace(math.log10(bin_spec[0]),
                           math.log10(bin_spec[1]),
                           num=bin_spec[2], endpoint=True)
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          analyzeautopowerparams_init,
                                          prefix=analyzeautopowerprefix)

        print self.params
        self.data_auto = h5py.File(self.params["data_auto_summary"], "r")
        self.data_xspec = h5py.File(self.params["data_xspec_summary"], "r")
        self.sim_auto = h5py.File(self.params["sim_auto_summary"], "r")
        self.sim_xspec = h5py.File(self.params["sim_xspec_summary"], "r")
Exemplo n.º 38
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          params_init,
                                          prefix=prefix)

        if not os.path.isdir(self.params['output_root']):
            os.mkdir(self.params['output_root'])

        self.refinement = self.params['refinement']
        self.scenario = self.params['scenario']
        self.template_file = self.params['template_file']
        self.output_root = self.params['output_root']
        # here we use 300 h km/s from WiggleZ for streaming dispersion
        self.streaming_dispersion = 300. * 0.72

        #self.template_map = algebra.make_vect(
        #                        algebra.load(self.template_file))
        self.datapath_db = data_paths.DataPath()
        self.template_map = self.datapath_db.fetch_multi(self.template_file)

        # determine the beam model
        self.beam_data = np.array([
            0.316148488246, 0.306805630985, 0.293729620792, 0.281176247549,
            0.270856788455, 0.26745856078, 0.258910010848, 0.249188429031
        ])

        self.freq_data = np.array([695, 725, 755, 785, 815, 845, 875, 905],
                                  dtype=float)
        self.freq_data *= 1.0e6

        # set the random seed
        if (self.params['seed'] < 0):
            # The usual seed is not fine enough for parallel jobs
            randsource = open("/dev/random", "rb")
            self.seed = struct.unpack("I", randsource.read(4))[0]
            #self.seed = abs(long(outfile_physical.__hash__()))
        else:
            self.seed = self.params['seed']

        random.seed(self.seed)

        # register any maps that need to be produced
        self.sim_map_phys = None
        self.sim_map = None
        self.sim_map_delta = None
        self.sim_map_optsim = None
        self.sim_map_withbeam = None
        self.sim_map_meansub = None
        self.sim_map_degrade = None
Exemplo n.º 39
0
def wrap_batch_gbtxwigglez_data_run(inifile,
                                    generate=False,
                                    outdir="./plots/"):
    r"""Wrapper to the GBT x WiggleZ calculation"""
    params_init = {
        "gbt_mapkey": "cleaned GBT map",
        "wigglez_deltakey": "WiggleZ overdensity map",
        "wigglez_mockkey": "WiggleZ overdensities from mocks",
        "wigglez_selectionkey": "WiggleZ selection function",
        "mode_transfer_1d_ini": "ini file -> 1d trans. function",
        "mode_transfer_2d_ini": "ini file -> 2d trans. function",
        "beam_transfer_ini": "ini file -> 2d beam trans. function",
        "spec_ini": "ini file for the spectral estimation",
        "output_tag": "tag identifying the output somehow"
    }
    prefix = "cwx_"

    params = parse_ini.parse(inifile, params_init, prefix=prefix)
    print params

    output_tag = "%s_%s" % (params['gbt_mapkey'], params['output_tag'])
    output_root = "%s/%s/" % (outdir, output_tag)

    if generate:
        output_tag = None

    print output_root
    print output_tag
    file_tools.mkparents(output_root)
    parse_ini.write_params(params, output_root + 'params.ini', prefix=prefix)

    datapath_db = data_paths.DataPath()

    mode_transfer_1d = None
    if params["mode_transfer_1d_ini"]:
        mode_transfer_1d = cct.wrap_batch_crosspwr_transfer(
            params["mode_transfer_1d_ini"], generate=generate, outdir=outdir)

    batch_gbtxwigglez_data_run(params["gbt_mapkey"],
                               params["wigglez_deltakey"],
                               params["wigglez_mockkey"],
                               params["wigglez_selectionkey"],
                               inifile=params["spec_ini"],
                               datapath_db=datapath_db,
                               outdir=output_root,
                               output_tag=output_tag,
                               beam_transfer=None,
                               mode_transfer_1d=mode_transfer_1d,
                               mode_transfer_2d=None,
                               theory_curve=None)
Exemplo n.º 40
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        self.datapath_db = dp.DataPath()

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          calc_mixing_init,
                                          prefix=calc_mixing_prefix)

        bin_spec = self.params["bins"]
        self.bins = np.logspace(math.log10(bin_spec[0]),
                                math.log10(bin_spec[1]),
                                num=bin_spec[2],
                                endpoint=True)
def wrap_batch_gbtxwigglez_data_run(inifile, generate=False,
                                    outdir="./plots/"):
    r"""Wrapper to the GBT x WiggleZ calculation"""
    params_init = {"gbt_mapkey": "cleaned GBT map",
                   "wigglez_deltakey": "WiggleZ overdensity map",
                   "wigglez_mockkey": "WiggleZ overdensities from mocks",
                   "wigglez_selectionkey": "WiggleZ selection function",
                   "mode_transfer_1d_ini": "ini file -> 1d trans. function",
                   "mode_transfer_2d_ini": "ini file -> 2d trans. function",
                   "beam_transfer_ini": "ini file -> 2d beam trans. function",
                   "spec_ini": "ini file for the spectral estimation",
                   "output_tag": "tag identifying the output somehow"}
    prefix = "cwx_"

    params = parse_ini.parse(inifile, params_init, prefix=prefix)
    print params

    output_tag = "%s_%s" % (params['gbt_mapkey'], params['output_tag'])
    output_root = "%s/%s/" % (outdir, output_tag)

    if generate:
        output_tag = None

    print output_root
    print output_tag
    file_tools.mkparents(output_root)
    parse_ini.write_params(params, output_root + 'params.ini',
                           prefix=prefix)

    datapath_db = data_paths.DataPath()

    mode_transfer_1d = None
    if params["mode_transfer_1d_ini"]:
        mode_transfer_1d = cct.wrap_batch_crosspwr_transfer(
                                            params["mode_transfer_1d_ini"],
                                            generate=generate,
                                            outdir=outdir)

    batch_gbtxwigglez_data_run(params["gbt_mapkey"],
                               params["wigglez_deltakey"],
                               params["wigglez_mockkey"],
                               params["wigglez_selectionkey"],
                               inifile=params["spec_ini"],
                               datapath_db=datapath_db,
                               outdir=output_root,
                               output_tag=output_tag,
                               beam_transfer=None,
                               mode_transfer_1d=mode_transfer_1d,
                               mode_transfer_2d=None,
                               theory_curve=None)
Exemplo n.º 42
0
def execute(pipe_file_or_dict, feedback=0):
    """Execute all the modules listed in the input file."""

    params, module_params = parse_ini.parse(pipe_file_or_dict,
                                            params_init,
                                            prefix='pipe_',
                                            return_undeclared=True,
                                            feedback=feedback)

    #print rank
    for module in params['modules']:
        if feedback > 1:
            print 'Excuting analysis module: ' + str(module)
        module(module_params, feedback=feedback).execute(params['processes'])
Exemplo n.º 43
0
 def __init__(self, parameter_file_or_dict=None, feedback=1):
     '''
         The initialize function here. 
         parameter_file_or_dict : This can be your XXX.pipe 
         feedback : how much information givin by the code.
     '''
     # call parse_ini.parse() to initialize the parameters. 
     # all parameters with prefix 'test_' will be read out,
     # and save into a dict self.params.
     self.params = parse_ini.parse(parameter_file_or_dict,
                                   params_init,
                                   prefix=prefix,
                                   feedback=feedback)
     self.feedback = feedback
Exemplo n.º 44
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        if parameter_file:
            self.params = parse_ini.parse(parameter_file, params_init,
                                          prefix=prefix)

        if not os.path.isdir(self.params['output_root']):
            os.mkdir(self.params['output_root'])

        self.refinement = self.params['refinement']
        self.scenario = self.params['scenario']
        self.template_file = self.params['template_file']
        self.output_root = self.params['output_root']
        # here we use 300 h km/s from WiggleZ for streaming dispersion
        self.streaming_dispersion = 300.*0.72

        #self.template_map = algebra.make_vect(
        #                        algebra.load(self.template_file))
        self.datapath_db = data_paths.DataPath()
        self.template_map = self.datapath_db.fetch_multi(self.template_file)

        # determine the beam model
        self.beam_data = np.array([0.316148488246, 0.306805630985,
                                   0.293729620792, 0.281176247549,
                                   0.270856788455, 0.26745856078,
                                   0.258910010848, 0.249188429031])

        self.freq_data = np.array([695, 725, 755, 785, 815, 845, 875, 905],
                                 dtype=float)
        self.freq_data *= 1.0e6

        # set the random seed
        if (self.params['seed'] < 0):
            # The usual seed is not fine enough for parallel jobs
            randsource = open("/dev/random", "rb")
            self.seed = struct.unpack("I", randsource.read(4))[0]
            #self.seed = abs(long(outfile_physical.__hash__()))
        else:
            self.seed = self.params['seed']

        random.seed(self.seed)

        # register any maps that need to be produced
        self.sim_map_phys = None
        self.sim_map = None
        self.sim_map_delta = None
        self.sim_map_optsim = None
        self.sim_map_withbeam = None
        self.sim_map_meansub = None
        self.sim_map_degrade = None
Exemplo n.º 45
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        self.params = params_dict
        np.seterr(invalid='raise')

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          calculatedatalike_init,
                                          prefix=calculatedatalike_prefix)

        print self.params["powerfile_in"], "->", self.params["powerdatalike_out"]

        self.stats_in = h5py.File(self.params["powerfile"], "r")
        self.treatments_in = self.stats_in["results"].keys()

        # maybe make this hd5?
        self.stats_dataout = shelve.open(self.params["powerdatalike_out"], "n")
Exemplo n.º 46
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0,
                 make_plot=True):
        self.params = params_dict
        np.seterr(under='raise')
        self.make_plot = make_plot

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          aggregatestatistics_init,
                                          prefix=aggregatestatistics_prefix)

        print "opening: ", self.params["aggfile_in"]
        self.summary = h5py.File(self.params["aggfile_in"], "r")
        # get the list of treatments
        self.treatments = self.summary["results"].keys()
        print "AggregateStatistics: treatment cases: ", self.treatments
Exemplo n.º 47
0
    def __init__(self, parameter_file_or_dict=None):
        self.params = parse_ini.parse(parameter_file_or_dict, params_init,
                                      prefix=prefix)

        self.freq_list = sp.array(self.params['freq_list'], dtype=int)
        self.lags = self.params['lags']
        self.nfreq_bin = self.params['nfreq_bin']

        #self.output_root = self.datapath_db.fetch(self.params['output_root'],
        #                                          intend_write=True)
        self.output_root = self.params['output_root']
        self.ini_root = self.params['ini_root']

        # Write parameter file.
        kiyopy.utils.mkparents(self.ini_root)
        parse_ini.write_params(self.params, self.ini_root + 'params.ini',
                               prefix=prefix)
Exemplo n.º 48
0
    def __init__(self, parameter_file=None, params_dict=None, feedback=0):
        # recordkeeping
        self.pairs = {}
        self.pairs_parallel_track = {}
        self.pairlist = []
        self.datapath_db = dp.DataPath()

        self.params = params_dict
        if parameter_file:
            self.params = parse_ini.parse(parameter_file, params_init,
                                          prefix=prefix)

        self.freq_list1 = sp.array(self.params['freq_list1'], dtype=int)
        if len(self.params['freq_list2']) == 0:
            self.freq_list2 = self.freq_list1
        else:
            self.freq_list2 = sp.array(self.params['freq_list2'], dtype=int)
Exemplo n.º 49
0
    def __init__(self, parameter_file_or_dict=None, feedback=2):

        # merge params of the all super classes
        mro = inspect.getmro(self.__class__)
        all_params = {}
        for cls in mro[-1::-1]: # reverse order
            try:
                cls_params = cls.params_init
            except AttributeError:
                continue
            all_params.update(cls_params)

        # Read in the parameters.
        self.params = parse_ini.parse(parameter_file_or_dict, all_params, prefix=self.prefix, feedback=feedback)

        # setup pipeline
        self._pipeline_setup()
Exemplo n.º 50
0
def wrap_batch_gbtpwrspec_data_run(inifile, generate=False,
                                    outdir="./plots/"):
    r"""Wrapper to the GBT x GBT calculation"""
    params_init = {"gbt_mapkey": "cleaned GBT map",
                   "mode_transfer_1d_ini": "ini file -> 1d trans. function",
                   "mode_transfer_2d_ini": "ini file -> 2d trans. function",
                   "beam_transfer_ini": "ini file -> 2d beam trans. function",
                   "square_1dmodetrans": False,
                   "spec_ini": "ini file for the spectral estimation",
                   "output_tag": "tag identifying the output somehow"}
    prefix="cp_"

    params = parse_ini.parse(inifile, params_init, prefix=prefix)
    print params

    output_tag = "%s_%s" % (params['gbt_mapkey'], params['output_tag'])
    output_root = "%s/%s/" % (outdir, output_tag)

    if generate:
        output_tag = None

    print output_root
    print output_tag
    file_tools.mkparents(output_root)
    parse_ini.write_params(params, output_root + 'params.ini',
                           prefix=prefix)

    datapath_db = data_paths.DataPath()

    mode_transfer_1d=None
    if params["mode_transfer_1d_ini"]:
        mode_transfer_1d = cct.wrap_batch_crosspwr_transfer(
                                            params["mode_transfer_1d_ini"],
                                            generate=generate,
                                            outdir=outdir)

    return batch_gbtpwrspec_data_run(params["gbt_mapkey"],
                         inifile=params["spec_ini"],
                         datapath_db=datapath_db,
                         outdir=output_root,
                         output_tag=output_tag,
                         beam_transfer=None,
                         square_1dmodetrans = params["square_1dmodetrans"],
                         mode_transfer_1d=mode_transfer_1d,
                         mode_transfer_2d=None)
Exemplo n.º 51
0
def wrap_batch_gbtpwrspec_data_run(inifile, generate=False, outdir="./plots/"):
    r"""Wrapper to the GBT x GBT calculation"""
    params_init = {
        "gbt_mapkey": "cleaned GBT map",
        "mode_transfer_1d_ini": "ini file -> 1d trans. function",
        "mode_transfer_2d_ini": "ini file -> 2d trans. function",
        "beam_transfer_ini": "ini file -> 2d beam trans. function",
        "square_1dmodetrans": False,
        "spec_ini": "ini file for the spectral estimation",
        "output_tag": "tag identifying the output somehow"
    }
    prefix = "cp_"

    params = parse_ini.parse(inifile, params_init, prefix=prefix)
    print params

    output_tag = "%s_%s" % (params['gbt_mapkey'], params['output_tag'])
    output_root = "%s/%s/" % (outdir, output_tag)

    if generate:
        output_tag = None

    print output_root
    print output_tag
    file_tools.mkparents(output_root)
    parse_ini.write_params(params, output_root + 'params.ini', prefix=prefix)

    datapath_db = data_paths.DataPath()

    mode_transfer_1d = None
    if params["mode_transfer_1d_ini"]:
        mode_transfer_1d = cct.wrap_batch_crosspwr_transfer(
            params["mode_transfer_1d_ini"], generate=generate, outdir=outdir)

    return batch_gbtpwrspec_data_run(
        params["gbt_mapkey"],
        inifile=params["spec_ini"],
        datapath_db=datapath_db,
        outdir=output_root,
        output_tag=output_tag,
        beam_transfer=None,
        square_1dmodetrans=params["square_1dmodetrans"],
        mode_transfer_1d=mode_transfer_1d,
        mode_transfer_2d=None)
Exemplo n.º 52
0
    def __init__(self, parameter_file_or_dict=None):
        self.params = parse_ini.parse(parameter_file_or_dict,
                                      params_init,
                                      prefix=prefix)

        self.freq_list = sp.array(self.params['freq_list'], dtype=int)
        self.lags = self.params['lags']
        self.nfreq_bin = self.params['nfreq_bin']

        #self.output_root = self.datapath_db.fetch(self.params['output_root'],
        #                                          intend_write=True)
        self.output_root = self.params['output_root']
        self.ini_root = self.params['ini_root']

        # Write parameter file.
        kiyopy.utils.mkparents(self.ini_root)
        parse_ini.write_params(self.params,
                               self.ini_root + 'params.ini',
                               prefix=prefix)
Exemplo n.º 53
0
    def __init__(self, parameter_file_or_dict=None, feedback=2) :
        # Read the parameter file, store in dictionary named parameters.
        self.params = parse_ini.parse(parameter_file_or_dict, params_init, 
                                      prefix=prefix, feedback=feedback)
        self.feedback = feedback

        # Read in the map files.
        map_fnames_start = (self.params['map_input_root']
                            + self.params['map_type'])
        self.maps = []
        for band in self.params['map_bands']:
            this_band_maps = []
            for pol in self.params['map_polarizations']:
                map_file_name = (map_fnames_start + pol + '_' + str(band)
                                 + '.npy')
                map = algebra.load(map_file_name)
                map = algebra.make_vect(map)
                this_band_maps.append(map)
            self.maps.append(this_band_maps)
Exemplo n.º 54
0
def repair_shelve_files(batch_param, ini_prefix, params_default, param_prefix):
    """Add missing information to shelves"""
    filelist = make_shelve_names(batch_param)
    for (index, filename, multiplier, cross_power) in filelist:
        print "repairing: " + filename
        directory = "/".join(filename.split("/")[0:-1]) + "/"
        run_index = re.findall(r'\d+', index)[0]
        ini_file = directory + ini_prefix + run_index + ".ini"
        print ini_file
        params = parse_ini.parse(ini_file, params_default,
                             prefix=param_prefix, feedback=10)

        radio_file1 = params['radio_root1'] + params['radio_data_file1']
        map_radio1 = algebra.make_vect(algebra.load(radio_file1))

        corr_data = shelve.open(filename + ".shelve")
        corr_data["params"] = params
        corr_data["freq_axis"] = map_radio1.get_axis('freq')
        corr_data.close()
Exemplo n.º 55
0
    def __init__(self,
                 parameter_file=None,
                 params_dict=None,
                 feedback=0,
                 make_plot=True):
        self.params = params_dict
        np.seterr(under='raise')
        self.make_plot = make_plot

        if parameter_file:
            self.params = parse_ini.parse(parameter_file,
                                          aggregatestatistics_init,
                                          prefix=aggregatestatistics_prefix)

        print "opening: ", self.params["aggfile_in"]
        self.summary = h5py.File(self.params["aggfile_in"], "r")
        # get the list of treatments
        self.treatments = self.summary["results"].keys()
        print "AggregateStatistics: treatment cases: ", self.treatments
Exemplo n.º 56
0
def call_xspec_run(map1_key, map2_key,
                   noiseinv1_key, noiseinv2_key,
                   inifile=None):
    r"""a free-standing function which calls the xspec analysis
    """
    params_init = {
        "unitless": True,
        "return_3d": False,
        "truncate": False,
        "window": None,
        "refinement": 2,
        "pad": 5,
        "order": 2,
        "freq_list": tuple(range(256)),
        "bins": [0.00765314, 2.49977141, 35]
                   }
    prefix = 'xs_'

    params = parse_ini.parse(inifile, params_init, prefix=prefix)
    if inifile is None:
        print "WARNING: no ini file for pwrspec estimation"

    # initialize and calculate the xspec
    simpair = mp.MapPair(map1_key, map2_key,
                         noiseinv1_key, noiseinv2_key,
                         params['freq_list'], avoid_db=True)

    bparam = params['bins']
    bins = np.logspace(math.log10(bparam[0]),
                       math.log10(bparam[1]),
                       num=bparam[2], endpoint=True)

    retval = simpair.pwrspec_summary(window=params['window'],
                                     unitless=params['unitless'],
                                     bins=bins,
                                     truncate=params['truncate'],
                                     refinement=params['refinement'],
                                     pad=params['pad'],
                                     order=params['order'],
                                     return_3d=params['return_3d'])

    return retval
def wrap_batch_crosspwr_transfer(inifile, generate=False, outdir="./plots/"):
    r"""Wrapper to the transfer function calculator
    """
    params_init = {
        "cleaned_simkey": "cleaned sims for transfer func",
        "truesignal_simkey": "pure signal",
        "truesignal_weightkey": "weight to use for pure signal",
        "reference_simkey": "reference signal",
        "reference_weightkey": "weight to use for reference signal",
        "spec_ini": "ini file for the spectral estimation",
        "output_tag": "tag identifying the output somehow"
    }
    prefix = "cct_"

    params = parse_ini.parse(inifile, params_init, prefix=prefix)
    print params

    output_tag = "%s_%s" % (params['cleaned_simkey'], params['output_tag'])
    output_root = "%s/%s/" % (outdir, output_tag)

    if generate:
        output_tag = None

    print output_root
    print output_tag
    file_tools.mkparents(output_root)
    parse_ini.write_params(params, output_root + 'params.ini', prefix=prefix)

    datapath_db = data_paths.DataPath()

    return batch_crosspwr_transfer(params["cleaned_simkey"],
                                   params["truesignal_simkey"],
                                   params["truesignal_weightkey"],
                                   params["reference_simkey"],
                                   params["reference_weightkey"],
                                   inifile=params["spec_ini"],
                                   datapath_db=datapath_db,
                                   outdir=output_root,
                                   output_tag=output_tag)
Exemplo n.º 58
0
def execute(pipe_file_or_dict, feedback=2) :
    """Execute all the modules listed in the input file."""

    # start a flag indicating that this pipeline is running
    busy_filename = "/tmp/pipeline.%s.%s.busy" % (os.getpid(), getpass.getuser())
    print "flagging running pipeline with %s" % busy_filename
    busyfile = open(busy_filename, "w")
    busyfile.write("%10.15f" % time.time())
    busyfile.close()

    params, module_params = parse_ini.parse(pipe_file_or_dict, params_init,
                                       prefix='pipe_',return_undeclared=True,
                                       feedback=feedback)

    for module in params['modules'] :
        # Module is either the python object that should be executed, or a
        # tuple, with the first element being the module and the second element
        # being a prefix replacement of the form ('p1_', 'p2_').  Before
        # executing the module, we rename all parameters begining with 'p1_'
        # to 'p2_'.
        if isinstance(module, tuple) :
            mod =  module[0]
            pars = dict(module_params)
            old_prefix = module[1][0]
            n = len(old_prefix)
            new_prefix = module[1][1]
            for key, value in module_params.iteritems() :
                if key[0:n] == old_prefix :
                    pars[new_prefix + key[n:]] = value
        else :
            mod = module
            pars = module_params
        if feedback > 1 :
            print 'Excuting analysis module: ' + str(mod)
        mod(pars, feedback=feedback).execute(params['processes'])

    # now remove the run indicator flag
    os.remove(busy_filename)