def inside():
    global ls
    ls = []
    c = request.form
    choice = c['val']
    if choice == 'r':
        return redirect("http://localhost:5000/recommend")
    else:
        user_choice = int(choice) - 1
        selected_doc = user_docs[user_choice]
        all_docs = lst[0]
        classifier_list = lst[2]
        # classifiers are sorted according to their f_measure in decreasing order. It helps when all
        # three classifiers differ in their predictions.

        classifier_list = sorted(classifier_list,
                                 key=lambda cl: cl.stats['f_measure'],
                                 reverse=True)

        prediction_list = list()
        for classifier in classifier_list:
            prediction_list.append(classifier.classify([selected_doc])[0])

        prediction_count = Counter(prediction_list)
        top_prediction = prediction_count.most_common(1)

        if top_prediction[0][1] > 1:
            prediction = top_prediction[0][0]
        else:
            prediction = prediction_list[0]

        # create knn instance using documents of predicted topic. and find k closest documents.
        knn = KNN(all_docs[prediction])
        k_neighbours = knn.find_k_neighbours(selected_doc, k_n)
        ls.append(selected_doc)
        ls.append(k_neighbours)
        return render_template('scnd.html', ls=ls)
Exemplo n.º 2
0
def recommendation(all_docs, test_docs, classifier_list):

    print("Recommendation System")
    print("---------------------")

    # ask user for the desired option count and recommendation count. set default value in case invalid inputs.
    try:
        option_count = int(raw_input("\nEnter number of articles to choose from. [number from 5 to 10 suggested]: "))
        if option_count < 1 or option_count > 20:
            print("Invalid Choice.. By default selected 5.")
            option_count = 5
    except:
        print("Invalid Choice.. By default selected 5.")
        option_count = 5

    try:
        k_n = int(raw_input("\nEnter number of recommendation per article. [number from 5 to 10 suggested]: "))
        if k_n < 1 or k_n > 20:
            print("Invalid Choice.. By default selected 5.")
            k_n = 5
    except:
        print("Invalid Choice.. By default selected 5.")
        k_n = 5

    end = False

    # run the loop until user quits.
    while not end:

        # pick random documents from test docs and provide titles to the user.
        user_docs = random.sample(test_docs, option_count)

        while True:
            print("\n---Available Choices For Articles(Titles)---\n")

            for i in range(len(user_docs)):
                print(str(i+1) + ": " + user_docs[i].title)

            print("r: Refresh List")
            print("q: Quit()\n")

            choice = raw_input("Enter Choice: ")

            if choice == 'q':
                end = True
                break
            elif choice == 'r':
                break
            else:
                try:
                    user_choice = int(choice) - 1
                    if user_choice < 0 or user_choice >= len(user_docs):
                        print("Invalid Choice.. Try Again..")
                        continue
                except:
                    print("Invalid Choice.. Try Again..")
                    continue
                selected_doc = user_docs[user_choice]

                # classifiers are sorted according to their f_measure in decreasing order. It helps when all
                # three classifiers differ in their predictions.
                classifier_list = sorted(classifier_list, key=lambda cl: cl.stats['f_measure'], reverse=True)

                prediction_list = list()
                for classifier in classifier_list:
                    prediction_list.append(classifier.classify([selected_doc])[0])

                prediction_count = Counter(prediction_list)
                top_prediction = prediction_count.most_common(1)

                if top_prediction[0][1] > 1:
                    prediction = top_prediction[0][0]
                else:
                    prediction = prediction_list[0]

                # create knn instance using documents of predicted topic. and find k closest documents.
                knn = KNN(all_docs[prediction])
                k_neighbours = knn.find_k_neighbours(selected_doc, k_n)

                while True:
                    print("\nRecommended Articles for : " + selected_doc.title)
                    for i in range(len(k_neighbours)):
                        print(str(i+1) + ": " + k_neighbours[i].title)
                    next_choice = raw_input("\nEnter Next Choice: [Article num to read the article. "
                                            "'o' to read the original article. "
                                            "'b' to go back to article choice list.]  ")

                    if next_choice == 'b':
                        break
                    elif next_choice == 'o':
                        text = selected_doc.text
                        print("\nArticle Text for original title : " + selected_doc.title)
                        print(text)
                    else:
                        try:
                            n_choice = int(next_choice) - 1
                            if n_choice < 0 or n_choice >= k_n:
                                print("Invalid Choice.. Try Again..")
                                continue
                        except:
                            print("Invalid Choice.. Try Again..")
                            continue
                        text = k_neighbours[n_choice].text
                        print("\nArticle Text for recommended title : " + k_neighbours[n_choice].title)
                        print(text)
Exemplo n.º 3
0
def recommendation(all_docs, test_docs, classifier_list):

    print("Recommendation System")
    print("---------------------")

    # ask user for the desired option count and recommendation count. set default value in case invalid inputs.
    try:
        option_count = int(
            raw_input(
                "\nEnter number of articles to choose from. [number from 5 to 10 suggested]: "
            ))
        if option_count < 1 or option_count > 20:
            print("Invalid Choice.. By default selected 5.")
            option_count = 5
    except:
        print("Invalid Choice.. By default selected 5.")
        option_count = 5

    try:
        k_n = int(
            raw_input(
                "\nEnter number of recommendation per article. [number from 5 to 10 suggested]: "
            ))
        if k_n < 1 or k_n > 20:
            print("Invalid Choice.. By default selected 5.")
            k_n = 5
    except:
        print("Invalid Choice.. By default selected 5.")
        k_n = 5

    end = False

    # run the loop until user quits.
    while not end:

        # pick random documents from test docs and provide titles to the user.
        user_docs = random.sample(test_docs, option_count)

        while True:
            print("\n---Available Choices For Articles(Titles)---\n")

            for i in range(len(user_docs)):
                print(str(i + 1) + ": " + user_docs[i].title)

            print("r: Refresh List")
            print("q: Quit()\n")

            choice = raw_input("Enter Choice: ")

            if choice == 'q':
                end = True
                break
            elif choice == 'r':
                break
            else:
                try:
                    user_choice = int(choice) - 1
                    if user_choice < 0 or user_choice >= len(user_docs):
                        print("Invalid Choice.. Try Again..")
                        continue
                except:
                    print("Invalid Choice.. Try Again..")
                    continue
                selected_doc = user_docs[user_choice]

                # classifiers are sorted according to their f_measure in decreasing order. It helps when all
                # three classifiers differ in their predictions.
                classifier_list = sorted(classifier_list,
                                         key=lambda cl: cl.stats['f_measure'],
                                         reverse=True)

                prediction_list = list()
                for classifier in classifier_list:
                    prediction_list.append(
                        classifier.classify([selected_doc])[0])

                prediction_count = Counter(prediction_list)
                top_prediction = prediction_count.most_common(1)

                if top_prediction[0][1] > 1:
                    prediction = top_prediction[0][0]
                else:
                    prediction = prediction_list[0]

                # create knn instance using documents of predicted topic. and find k closest documents.
                knn = KNN(all_docs[prediction])
                k_neighbours = knn.find_k_neighbours(selected_doc, k_n)

                while True:
                    print("\nRecommended Articles for : " + selected_doc.title)
                    for i in range(len(k_neighbours)):
                        print(str(i + 1) + ": " + k_neighbours[i].title)
                    next_choice = raw_input(
                        "\nEnter Next Choice: [Article num to read the article. "
                        "'o' to read the original article. "
                        "'b' to go back to article choice list.]  ")

                    if next_choice == 'b':
                        break
                    elif next_choice == 'o':
                        text = selected_doc.text
                        print("\nArticle Text for original title : " +
                              selected_doc.title)
                        print(text)
                    else:
                        try:
                            n_choice = int(next_choice) - 1
                            if n_choice < 0 or n_choice >= k_n:
                                print("Invalid Choice.. Try Again..")
                                continue
                        except:
                            print("Invalid Choice.. Try Again..")
                            continue
                        text = k_neighbours[n_choice].text
                        print("\nArticle Text for recommended title : " +
                              k_neighbours[n_choice].title)
                        print(text)
Exemplo n.º 4
0
def recommendation(all_docs, test_docs, classifier_list):

    print("Recommendation System")
    print("---------------------")

    try:
        option_count = int(
            input(
                "\nEnter number of articles to choose from. [number from 5 to 10 suggested]: "
            ))
        if option_count < 1 or option_count > 20:
            print("Invalid Choice.. By default selected 5.")
            option_count = 5
    except:
        print("Invalid Choice.. By default selected 5.")
        option_count = 5

    try:
        k_n = int(
            input(
                "\nEnter number of recommendation per article. [number from 5 to 10 suggested]: "
            ))
        if k_n < 1 or k_n > 20:
            print("Invalid Choice.. By default selected 5.")
            k_n = 5
    except:
        print("Invalid Choice.. By default selected 5.")
        k_n = 5

    end = False

    while not end:

        user_docs = random.sample(test_docs, option_count)

        while True:
            print("\n---Available Choices For Articles(Titles)---\n")

            for i in range(len(user_docs)):
                print(str(i + 1) + ": " + user_docs[i].title)

            print("r: Refresh List")
            print("q: Quit()\n")

            choice = input("Enter Choice: ")

            if choice == 'q':
                end = True
                break
            elif choice == 'r':
                break
            else:
                try:
                    user_choice = int(choice) - 1
                    if user_choice < 0 or user_choice >= len(user_docs):
                        print("Invalid Choice.. Try Again..")
                        continue
                except:
                    print("Invalid Choice.. Try Again..")
                    continue
                selected_doc = user_docs[user_choice]

                classifier_list = sorted(classifier_list,
                                         key=lambda cl: cl.stats['f_measure'],
                                         reverse=True)

                prediction_list = list()
                for classifier in classifier_list:
                    prediction_list.append(
                        classifier.classify([selected_doc])[0])

                prediction_count = Counter(prediction_list)
                top_prediction = prediction_count.most_common(1)

                if top_prediction[0][1] > 1:
                    prediction = top_prediction[0][0]
                else:
                    prediction = prediction_list[0]

                knn = KNN(all_docs[prediction])
                k_neighbours = knn.find_k_neighbours(selected_doc, k_n)

                while True:
                    print("\nRecommended Articles for : " + selected_doc.title)
                    for i in range(len(k_neighbours)):
                        print(str(i + 1) + ": " + k_neighbours[i].title)
                    next_choice = input(
                        "\nEnter Next Choice: [Article num to read the article. "
                        "'o' to read the original article. "
                        "'b' to go back to article choice list.]  ")

                    if next_choice == 'b':
                        break
                    elif next_choice == 'o':
                        text = selected_doc.text
                        print("\nArticle Text for original title : " +
                              selected_doc.title)
                        print(text)
                    else:
                        try:
                            n_choice = int(next_choice) - 1
                            if n_choice < 0 or n_choice >= k_n:
                                print("Invalid Choice.. Try Again..")
                                continue
                        except:
                            print("Invalid Choice.. Try Again..")
                            continue
                        text = k_neighbours[n_choice].text
                        print("\nArticle Text for recommended title : " +
                              k_neighbours[n_choice].title)
                        print(text)