Exemplo n.º 1
0
def match_nn(
    desc1: torch.Tensor, desc2: torch.Tensor, dm: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
    r"""Function, which finds nearest neighbors in desc2 for each vector in desc1.

    If the distance matrix dm is not provided, :py:func:`torch.cdist` is used.

    Args:
        desc1: Batch of descriptors of a shape :math:`(B1, D)`.
        desc2: Batch of descriptors of a shape :math:`(B2, D)`.
        dm: Tensor containing the distances from each descriptor in desc1
          to each descriptor in desc2, shape of :math:`(B1, B2)`.

    Returns:
        - Descriptor distance of matching descriptors, shape of :math:`(B1, 1)`.
        - Long tensor indexes of matching descriptors in desc1 and desc2, shape of :math:`(B1, 2)`.
    """
    KORNIA_CHECK_SHAPE(desc1, ["B", "DIM"])
    KORNIA_CHECK_SHAPE(desc2, ["B", "DIM"])

    if dm is None:
        dm = torch.cdist(desc1, desc2)
    else:
        if not ((dm.size(0) == desc1.size(0)) and (dm.size(1) == desc2.size(0))):
            raise AssertionError

    match_dists, idxs_in_2 = torch.min(dm, dim=1)
    idxs_in1: torch.Tensor = torch.arange(0, idxs_in_2.size(0), device=idxs_in_2.device)
    matches_idxs: torch.Tensor = torch.cat([idxs_in1.view(-1, 1), idxs_in_2.view(-1, 1)], dim=1)
    return match_dists.view(-1, 1), matches_idxs.view(-1, 2)
Exemplo n.º 2
0
def laf_from_center_scale_ori(
        xy: torch.Tensor,
        scale: Optional[torch.Tensor] = None,
        ori: Optional[torch.Tensor] = None) -> torch.Tensor:
    """Return orientation of the LAFs, in radians. Useful to create kornia LAFs from OpenCV keypoints.

    Args:
        xy: tensor [BxNx2].
        scale: tensor [BxNx1x1]. If not provided, scale = 1 is assumed
        ori: tensor [BxNx1]. If not provided orientation = 0 is assumed

    Returns:
        tensor BxNx2x3.
    """
    KORNIA_CHECK_SHAPE(xy, ["B", "N", "2"])
    device = xy.device
    dtype = xy.dtype
    B, N = xy.shape[:2]
    if scale is None:
        scale = torch.ones(B, N, 1, 1, device=device, dtype=dtype)
    if ori is None:
        ori = torch.zeros(B, N, 1, device=device, dtype=dtype)
    KORNIA_CHECK_SHAPE(scale, ["B", "N", "1", "1"])
    KORNIA_CHECK_SHAPE(ori, ["B", "N", "1"])
    unscaled_laf: torch.Tensor = torch.cat(
        [angle_to_rotation_matrix(ori.squeeze(-1)),
         xy.unsqueeze(-1)], dim=-1)
    laf: torch.Tensor = scale_laf(unscaled_laf, scale)
    return laf
Exemplo n.º 3
0
def match_smnn(
    desc1: torch.Tensor, desc2: torch.Tensor, th: float = 0.8, dm: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Function, which finds mutual nearest neighbors in desc2 for each vector in desc1.

    the method satisfies first to second nearest neighbor distance <= th.

    If the distance matrix dm is not provided, :py:func:`torch.cdist` is used.

    Args:
        desc1: Batch of descriptors of a shape :math:`(B1, D)`.
        desc2: Batch of descriptors of a shape :math:`(B2, D)`.
        th: distance ratio threshold.
        dm: Tensor containing the distances from each descriptor in desc1
          to each descriptor in desc2, shape of :math:`(B1, B2)`.

    Return:
        - Descriptor distance of matching descriptors, shape of. :math:`(B3, 1)`.
        - Long tensor indexes of matching descriptors in desc1 and desc2,
          shape of :math:`(B3, 2)` where 0 <= B3 <= B1.
    """
    KORNIA_CHECK_SHAPE(desc1, ["B", "DIM"])
    KORNIA_CHECK_SHAPE(desc2, ["B", "DIM"])

    if desc1.shape[0] < 2:
        raise AssertionError
    if desc2.shape[0] < 2:
        raise AssertionError

    if dm is None:
        dm = torch.cdist(desc1, desc2)
    else:
        if not ((dm.size(0) == desc1.size(0)) and (dm.size(1) == desc2.size(0))):
            raise AssertionError

    dists1, idx1 = match_snn(desc1, desc2, th, dm)
    dists2, idx2 = match_snn(desc2, desc1, th, dm.t())

    if len(dists2) > 0 and len(dists1) > 0:
        idx2 = idx2.flip(1)
        idxs_dm = torch.cdist(idx1.float(), idx2.float(), p=1.0)
        mutual_idxs1 = idxs_dm.min(dim=1)[0] < 1e-8
        mutual_idxs2 = idxs_dm.min(dim=0)[0] < 1e-8
        good_idxs1 = idx1[mutual_idxs1.view(-1)]
        good_idxs2 = idx2[mutual_idxs2.view(-1)]
        dists1_good = dists1[mutual_idxs1.view(-1)]
        dists2_good = dists2[mutual_idxs2.view(-1)]
        _, idx_upl1 = torch.sort(good_idxs1[:, 0])
        _, idx_upl2 = torch.sort(good_idxs2[:, 0])
        good_idxs1 = good_idxs1[idx_upl1]
        match_dists = torch.max(dists1_good[idx_upl1], dists2_good[idx_upl2])
        matches_idxs = good_idxs1
    else:
        matches_idxs, match_dists = torch.empty(0, 2, device=dm.device), torch.empty(0, 1, device=dm.device)
    return match_dists.view(-1, 1), matches_idxs.view(-1, 2)
Exemplo n.º 4
0
def raise_error_if_laf_is_not_valid(laf: torch.Tensor) -> None:
    """Auxiliary function, which verifies that input.

    Args:
        laf: [BxNx2x3] shape.
    """
    KORNIA_CHECK_SHAPE(laf, ["B", "N", "2", "3"])
Exemplo n.º 5
0
    def forward(self, patch: torch.Tensor) -> torch.Tensor:
        """Args:
            patch: (torch.Tensor) shape [Bx1xHxW]
        Returns:
            torch.Tensor: ellipse_shape shape [Bx1x3]"""
        KORNIA_CHECK_SHAPE(patch, ["B", "1", "H", "W"])
        self.weighting = self.weighting.to(patch.dtype).to(patch.device)
        grads: torch.Tensor = self.gradient(patch) * self.weighting
        # unpack the edges
        gx: torch.Tensor = grads[:, :, 0]
        gy: torch.Tensor = grads[:, :, 1]
        # abc == 1st axis, mixture, 2nd axis. Ellipse_shape is a 2nd moment matrix.
        ellipse_shape = torch.cat(
            [
                gx.pow(2).mean(dim=2).mean(dim=2, keepdim=True),
                (gx * gy).mean(dim=2).mean(dim=2, keepdim=True),
                gy.pow(2).mean(dim=2).mean(dim=2, keepdim=True),
            ],
            dim=2,
        )

        # Now lets detect degenerate cases: when 2 or 3 elements are close to zero (e.g. if patch is completely black
        bad_mask = ((ellipse_shape < self.eps).float().sum(dim=2, keepdim=True)
                    >= 2).to(ellipse_shape.dtype)
        # We will replace degenerate shape with circular shapes.
        circular_shape = torch.tensor([1.0, 0.0, 1.0]).to(
            ellipse_shape.device).to(ellipse_shape.dtype).view(1, 1, 3)
        ellipse_shape = ellipse_shape * (1.0 -
                                         bad_mask) + circular_shape * bad_mask
        # normalization
        ellipse_shape = ellipse_shape / ellipse_shape.max(dim=2,
                                                          keepdim=True)[0]
        return ellipse_shape
Exemplo n.º 6
0
    def forward(self, input):
        KORNIA_CHECK_SHAPE(input, ["B", "1", "H", "W"])

        B, CH, W, H = input.size()
        self.bin_pooling_kernel = self.bin_pooling_kernel.to(input.dtype).to(input.device)
        self.PoolingConv = self.PoolingConv.to(input.dtype).to(input.device)
        grads: torch.Tensor = spatial_gradient(input, 'diff')
        # unpack the edges
        gx: torch.Tensor = grads[:, :, 0]
        gy: torch.Tensor = grads[:, :, 1]
        mag: torch.Tensor = torch.sqrt(gx * gx + gy * gy + self.eps)
        ori: torch.Tensor = torch.atan2(gy, gx + self.eps) + 2.0 * pi
        o_big: torch.Tensor = float(self.num_ang_bins) * ori / (2.0 * pi)

        bo0_big_: torch.Tensor = torch.floor(o_big)
        wo1_big_: torch.Tensor = (o_big - bo0_big_)
        bo0_big: torch.Tensor = bo0_big_ % self.num_ang_bins
        bo1_big: torch.Tensor = (bo0_big + 1) % self.num_ang_bins
        wo0_big: torch.Tensor = (1.0 - wo1_big_) * mag  # type: ignore
        wo1_big: torch.Tensor = wo1_big_ * mag
        ang_bins = []
        for i in range(0, self.num_ang_bins):
            out = self.bin_pooling_kernel((bo0_big == i).to(input.dtype) * wo0_big +  # noqa
                                          (bo1_big == i).to(input.dtype) * wo1_big)
            ang_bins.append(out)
        ang_bins = torch.cat(ang_bins, dim=1)
        out_no_norm = self.PoolingConv(ang_bins)
        out = F.normalize(out_no_norm, dim=1, p=2).clamp_(0, float(self.clipval))
        out = F.normalize(out, dim=1, p=2)
        if self.rootsift:
            out = torch.sqrt(F.normalize(out, p=1) + self.eps)
        return out
Exemplo n.º 7
0
    def forward(self, laf: torch.Tensor, img: torch.Tensor) -> torch.Tensor:
        """
        Args:
            laf: (torch.Tensor) shape [BxNx2x3]
            img: (torch.Tensor) shape [Bx1xHxW]

        Returns:
            torch.Tensor: laf_out shape [BxNx2x3]"""
        raise_error_if_laf_is_not_valid(laf)
        KORNIA_CHECK_SHAPE(img, ["B", "1", "H", "W"])
        B, N = laf.shape[:2]
        PS: int = self.patch_size
        patches: torch.Tensor = extract_patches_from_pyramid(
            img, make_upright(laf), PS, True).view(-1, 1, PS, PS)
        ellipse_shape: torch.Tensor = self.affine_shape_detector(patches)
        ellipses = torch.cat(
            [laf.view(-1, 2, 3)[..., 2].unsqueeze(1), ellipse_shape],
            dim=2).view(B, N, 5)
        scale_orig = get_laf_scale(laf)
        if self.preserve_orientation:
            ori_orig = get_laf_orientation(laf)
        laf_out = ellipse_to_laf(ellipses)
        ellipse_scale = get_laf_scale(laf_out)
        laf_out = scale_laf(laf_out, scale_orig / ellipse_scale)
        if self.preserve_orientation:
            laf_out = set_laf_orientation(laf_out, ori_orig)
        return laf_out
Exemplo n.º 8
0
    def forward(self, laf: torch.Tensor, img: torch.Tensor) -> torch.Tensor:
        """
        Args:
            laf: shape [BxNx2x3]
            img: shape [Bx1xHxW]

        Returns:
            laf_out shape [BxNx2x3]
        """
        raise_error_if_laf_is_not_valid(laf)
        KORNIA_CHECK_SHAPE(img, ["B", "1", "H", "W"])
        B, N = laf.shape[:2]
        PS: int = self.patch_size
        patches: torch.Tensor = extract_patches_from_pyramid(
            img, make_upright(laf), PS, True).view(-1, 1, PS, PS)
        xy = self.features(self._normalize_input(patches)).view(-1, 3)
        a1 = torch.cat(
            [1.0 + xy[:, 0].reshape(-1, 1, 1), 0 * xy[:, 0].reshape(-1, 1, 1)],
            dim=2)
        a2 = torch.cat(
            [xy[:, 1].reshape(-1, 1, 1), 1.0 + xy[:, 2].reshape(-1, 1, 1)],
            dim=2)
        new_laf_no_center = torch.cat([a1, a2], dim=1).reshape(B, N, 2, 2)
        new_laf = torch.cat([new_laf_no_center, laf[:, :, :, 2:3]], dim=3)
        scale_orig = get_laf_scale(laf)
        if self.preserve_orientation:
            ori_orig = get_laf_orientation(laf)
        ellipse_scale = get_laf_scale(new_laf)
        laf_out = scale_laf(make_upright(new_laf), scale_orig / ellipse_scale)
        if self.preserve_orientation:
            laf_out = set_laf_orientation(laf_out, ori_orig)
        return laf_out
Exemplo n.º 9
0
    def forward(self, input):
        KORNIA_CHECK_SHAPE(input, ["B", "1", f"{self.patch_size}", f"{self.patch_size}"])
        B: int = input.shape[0]
        self.pk = self.pk.to(input.dtype).to(input.device)

        grads: torch.Tensor = spatial_gradient(input, 'diff')
        # unpack the edges
        gx: torch.Tensor = grads[:, :, 0]
        gy: torch.Tensor = grads[:, :, 1]

        mag: torch.Tensor = torch.sqrt(gx * gx + gy * gy + self.eps)
        ori: torch.Tensor = torch.atan2(gy, gx + self.eps) + 2.0 * pi
        mag = mag * self.gk.expand_as(mag).type_as(mag).to(mag.device)
        o_big: torch.Tensor = float(self.num_ang_bins) * ori / (2.0 * pi)

        bo0_big_: torch.Tensor = torch.floor(o_big)
        wo1_big_: torch.Tensor = o_big - bo0_big_
        bo0_big: torch.Tensor = bo0_big_ % self.num_ang_bins
        bo1_big: torch.Tensor = (bo0_big + 1) % self.num_ang_bins
        wo0_big: torch.Tensor = (1.0 - wo1_big_) * mag  # type: ignore
        wo1_big: torch.Tensor = wo1_big_ * mag

        ang_bins = []
        for i in range(0, self.num_ang_bins):
            out = self.pk((bo0_big == i).to(input.dtype) * wo0_big + (bo1_big == i).to(input.dtype) * wo1_big)
            ang_bins.append(out)
        ang_bins = torch.cat(ang_bins, dim=1)
        ang_bins = ang_bins.view(B, -1)
        ang_bins = F.normalize(ang_bins, p=2)
        ang_bins = torch.clamp(ang_bins, 0.0, float(self.clipval))
        ang_bins = F.normalize(ang_bins, p=2)
        if self.rootsift:
            ang_bins = torch.sqrt(F.normalize(ang_bins, p=1) + self.eps)
        return ang_bins
Exemplo n.º 10
0
 def forward(self, input: torch.Tensor) -> torch.Tensor:
     KORNIA_CHECK_SHAPE(input, ["B", "1", "32", "32"])
     x_norm: torch.Tensor = self._normalize_input(input)
     x_features: torch.Tensor = self.features(x_norm)
     mean: torch.Tensor = torch.jit.annotate(torch.Tensor, self.mean)
     components: torch.Tensor = torch.jit.annotate(torch.Tensor,
                                                   self.components)
     x_prePCA = F.normalize(x_features.view(x_features.size(0), -1))
     pca = torch.mm(x_prePCA - mean, components)
     return F.normalize(pca, dim=1)
Exemplo n.º 11
0
def match_snn(
    desc1: torch.Tensor, desc2: torch.Tensor, th: float = 0.8, dm: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Function, which finds nearest neighbors in desc2 for each vector in desc1.

    The method satisfies first to second nearest neighbor distance <= th.

    If the distance matrix dm is not provided, :py:func:`torch.cdist` is used.

    Args:
        desc1: Batch of descriptors of a shape :math:`(B1, D)`.
        desc2: Batch of descriptors of a shape :math:`(B2, D)`.
        th: distance ratio threshold.
        dm: Tensor containing the distances from each descriptor in desc1
          to each descriptor in desc2, shape of :math:`(B1, B2)`.

    Return:
        - Descriptor distance of matching descriptors, shape of :math:`(B3, 1)`.
        - Long tensor indexes of matching descriptors in desc1 and desc2. Shape: :math:`(B3, 2)`,
          where 0 <= B3 <= B1.
    """
    KORNIA_CHECK_SHAPE(desc1, ["B", "DIM"])
    KORNIA_CHECK_SHAPE(desc2, ["B", "DIM"])

    if desc2.shape[0] < 2:
        raise AssertionError

    if dm is None:
        dm = torch.cdist(desc1, desc2)
    else:
        if not ((dm.size(0) == desc1.size(0)) and (dm.size(1) == desc2.size(0))):
            raise AssertionError

    vals, idxs_in_2 = torch.topk(dm, 2, dim=1, largest=False)
    ratio = vals[:, 0] / vals[:, 1]
    mask = ratio <= th
    match_dists = ratio[mask]
    idxs_in1 = torch.arange(0, idxs_in_2.size(0), device=dm.device)[mask]
    idxs_in_2 = idxs_in_2[:, 0][mask]
    matches_idxs = torch.cat([idxs_in1.view(-1, 1), idxs_in_2.view(-1, 1)], dim=1)
    return match_dists.view(-1, 1), matches_idxs.view(-1, 2)
Exemplo n.º 12
0
def match_mnn(
    desc1: torch.Tensor, desc2: torch.Tensor, dm: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Function, which finds mutual nearest neighbors in desc2 for each vector in desc1.

    If the distance matrix dm is not provided, :py:func:`torch.cdist` is used.

    Args:
        desc1: Batch of descriptors of a shape :math:`(B1, D)`.
        desc2: Batch of descriptors of a shape :math:`(B2, D)`.
        dm: Tensor containing the distances from each descriptor in desc1
          to each descriptor in desc2, shape of :math:`(B1, B2)`.

    Return:
        - Descriptor distance of matching descriptors, shape of. :math:`(B3, 1)`.
        - Long tensor indexes of matching descriptors in desc1 and desc2, shape of :math:`(B3, 2)`,
          where 0 <= B3 <= min(B1, B2)
    """
    KORNIA_CHECK_SHAPE(desc1, ["B", "DIM"])
    KORNIA_CHECK_SHAPE(desc2, ["B", "DIM"])

    if dm is None:
        dm = torch.cdist(desc1, desc2)
    else:
        if not ((dm.size(0) == desc1.size(0)) and (dm.size(1) == desc2.size(0))):
            raise AssertionError

    ms = min(dm.size(0), dm.size(1))
    match_dists, idxs_in_2 = torch.min(dm, dim=1)
    match_dists2, idxs_in_1 = torch.min(dm, dim=0)
    minsize_idxs = torch.arange(ms, device=dm.device)

    if dm.size(0) <= dm.size(1):
        mutual_nns = minsize_idxs == idxs_in_1[idxs_in_2][:ms]
        matches_idxs = torch.cat([minsize_idxs.view(-1, 1), idxs_in_2.view(-1, 1)], dim=1)[mutual_nns]
        match_dists = match_dists[mutual_nns]
    else:
        mutual_nns = minsize_idxs == idxs_in_2[idxs_in_1][:ms]
        matches_idxs = torch.cat([idxs_in_1.view(-1, 1), minsize_idxs.view(-1, 1)], dim=1)[mutual_nns]
        match_dists = match_dists2[mutual_nns]
    return match_dists.view(-1, 1), matches_idxs.view(-1, 2)
Exemplo n.º 13
0
def dog_response(input: torch.Tensor) -> torch.Tensor:
    r"""Compute the Difference-of-Gaussian response.

    Args:
        input: a given the gaussian 5d tensor :math:`(B, C, D, H, W)`.

    Return:
        the response map per channel with shape :math:`(B, C, D-1, H, W)`.

    """
    KORNIA_CHECK_SHAPE(input, ["B", "C", "L", "H", "W"])

    return input[:, :, 1:] - input[:, :, :-1]
Exemplo n.º 14
0
def draw_convex_polygon(images: Tensor, polygons: Union[Tensor, List[Tensor]],
                        colors: Tensor) -> Tensor:
    r"""Draws convex polygons on a batch of image tensors.

    Args:
        images: is tensor of BxCxHxW.
        polygons: represents polygons as points, either BxNx2 or List of variable length polygons.
            N is the number of points.
            2 is (x, y).
        color: a B x 3 tensor or 3 tensor with color to fill in.

    Returns:
        This operation modifies image inplace but also returns the drawn tensor for
        convenience with same shape the of the input BxCxHxW.

    Note:
        This function assumes a coordinate system (0, h - 1), (0, w - 1) in the image, with (0, 0) being the center
        of the top-left pixel and (w - 1, h - 1) being the center of the bottom-right coordinate.

    Example:
        >>> img = torch.rand(1, 3, 12, 16)
        >>> poly = torch.tensor([[[4, 4], [12, 4], [12, 8], [4, 8]]])
        >>> color = torch.tensor([[0.5, 0.5, 0.5]])
        >>> out = draw_convex_polygon(img, poly, color)
    """
    # TODO: implement optional linetypes for smooth edges
    KORNIA_CHECK_SHAPE(images, ["B", "C", "H", "W"])
    b_i, c_i, h_i, w_i, device = *images.shape, images.device
    if isinstance(polygons, List):
        polygons = _batch_polygons(polygons)
    b_p, _, xy, device_p, dtype_p = *polygons.shape, polygons.device, polygons.dtype
    if len(colors.shape) == 1:
        colors = colors.expand(b_i, c_i)
    b_c, _, device_c = *colors.shape, colors.device
    KORNIA_CHECK(xy == 2, "Polygon vertices must be xy, i.e. 2-dimensional")
    KORNIA_CHECK(b_i == b_p == b_c,
                 "Image, polygon, and color must have same batch dimension")
    KORNIA_CHECK(device == device_p == device_c,
                 "Image, polygon, and color must have same device")

    x_left, x_right = _get_convex_edges(polygons, h_i, w_i)
    ws = torch.arange(w_i, device=device, dtype=dtype_p)[None, None, :]
    fill_region = (ws >= x_left[..., :, None]) & (ws <= x_right[..., :, None])
    images = (~fill_region[:, None]
              ) * images + fill_region[:, None] * colors[..., None, None]
    return images
Exemplo n.º 15
0
    def forward(self, laf: torch.Tensor, img: torch.Tensor) -> torch.Tensor:
        """
        Args:
            laf: shape [BxNx2x3]
            img: shape [Bx1xHxW]

        Returns:
            laf_out, shape [BxNx2x3]
        """
        raise_error_if_laf_is_not_valid(laf)
        KORNIA_CHECK_SHAPE(img, ["B", "C", "H", "W"])
        if laf.size(0) != img.size(0):
            raise ValueError(f"Batch size of laf and img should be the same. Got {img.size(0)}, {laf.size(0)}")
        B, N = laf.shape[:2]
        patches: torch.Tensor = extract_patches_from_pyramid(img, laf, self.patch_size).view(
            -1, 1, self.patch_size, self.patch_size
        )
        angles_radians: torch.Tensor = self.angle_detector(patches).view(B, N)
        prev_angle = get_laf_orientation(laf).view_as(angles_radians)
        laf_out: torch.Tensor = set_laf_orientation(laf, rad2deg(angles_radians) + prev_angle)
        return laf_out
Exemplo n.º 16
0
def hessian_response(input: torch.Tensor,
                     grads_mode: str = 'sobel',
                     sigmas: Optional[torch.Tensor] = None) -> torch.Tensor:
    r"""Compute the absolute of determinant of the Hessian matrix.

    Function does not do any normalization or nms. The response map is computed according the following formulation:

    .. math::
        R = det(H)

    where:

    .. math::
        M = \sum_{(x,y) \in W}
        \begin{bmatrix}
            I_{xx} & I_{xy} \\
            I_{xy} & I_{yy} \\
        \end{bmatrix}

    Args:
        input: input image with shape :math:`(B, C, H, W)`.
        grads_mode: can be ``'sobel'`` for standalone use or ``'diff'`` for use on Gaussian pyramid.
        sigmas: coefficients to be multiplied by multichannel response. Should be shape of :math:`(B)`
          It is necessary for performing non-maxima-suppression across different scale pyramid levels.
          See `vlfeat <https://github.com/vlfeat/vlfeat/blob/master/vl/covdet.c#L874>`_.

    Return:
        the response map per channel with shape :math:`(B, C, H, W)`.

    Shape:
       - Input: :math:`(B, C, H, W)`
       - Output: :math:`(B, C, H, W)`

    Examples:
        >>> input = torch.tensor([[[
        ...    [0., 0., 0., 0., 0., 0., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 0., 0., 0., 0., 0., 0.],
        ... ]]])  # 1x1x7x7
        >>> # compute the response map
        hessian_response(input)
        tensor([[[[0.0155, 0.0334, 0.0194, 0.0000, 0.0194, 0.0334, 0.0155],
                  [0.0334, 0.0575, 0.0339, 0.0000, 0.0339, 0.0575, 0.0334],
                  [0.0194, 0.0339, 0.0497, 0.0000, 0.0497, 0.0339, 0.0194],
                  [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
                  [0.0194, 0.0339, 0.0497, 0.0000, 0.0497, 0.0339, 0.0194],
                  [0.0334, 0.0575, 0.0339, 0.0000, 0.0339, 0.0575, 0.0334],
                  [0.0155, 0.0334, 0.0194, 0.0000, 0.0194, 0.0334, 0.0155]]]])
    """
    # TODO: Recompute doctest
    KORNIA_CHECK_SHAPE(input, ["B", "C", "H", "W"])

    if sigmas is not None:
        if not isinstance(sigmas, torch.Tensor):
            raise TypeError(
                f"sigmas type is not a torch.Tensor. Got {type(sigmas)}")

        if (not len(sigmas.shape) == 1) or (sigmas.size(0) != input.size(0)):
            raise ValueError(
                f"Invalid sigmas shape, we expect B == input.size(0). Got: {sigmas.shape}"
            )

    gradients: torch.Tensor = spatial_gradient(input, grads_mode, 2)
    dxx: torch.Tensor = gradients[:, :, 0]
    dxy: torch.Tensor = gradients[:, :, 1]
    dyy: torch.Tensor = gradients[:, :, 2]

    scores: torch.Tensor = dxx * dyy - dxy**2

    if sigmas is not None:
        scores = scores * sigmas.pow(4).view(-1, 1, 1, 1)

    return scores
Exemplo n.º 17
0
 def forward(self, input: torch.Tensor) -> torch.Tensor:
     KORNIA_CHECK_SHAPE(input, ["B", "1", "32", "32"])
     x = self.features(input)
     x = x.view(x.size(0), -1)
     x = self.descr(x)
     return x
Exemplo n.º 18
0
def gftt_response(input: torch.Tensor,
                  grads_mode: str = 'sobel',
                  sigmas: Optional[torch.Tensor] = None) -> torch.Tensor:
    r"""Compute the Shi-Tomasi cornerness function.

    Function does not do any normalization or nms. The response map is computed according the following formulation:

    .. math::
        R = min(eig(M))

    where:

    .. math::
        M = \sum_{(x,y) \in W}
        \begin{bmatrix}
            I^{2}_x & I_x I_y \\
            I_x I_y & I^{2}_y \\
        \end{bmatrix}

    Args:
        input: input image with shape :math:`(B, C, H, W)`.
        grads_mode: can be ``'sobel'`` for standalone use or ``'diff'`` for use on Gaussian pyramid.
        sigmas: coefficients to be multiplied by multichannel response. Should be shape of :math:`(B)`
          It is necessary for performing non-maxima-suppression across different scale pyramid levels.
          See `vlfeat <https://github.com/vlfeat/vlfeat/blob/master/vl/covdet.c#L874>`_.

    Return:
        the response map per channel with shape :math:`(B, C, H, W)`.

    Example:
        >>> input = torch.tensor([[[
        ...    [0., 0., 0., 0., 0., 0., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 0., 0., 0., 0., 0., 0.],
        ... ]]])  # 1x1x7x7
        >>> # compute the response map
        gftt_response(input)
        tensor([[[[0.0155, 0.0334, 0.0194, 0.0000, 0.0194, 0.0334, 0.0155],
                  [0.0334, 0.0575, 0.0339, 0.0000, 0.0339, 0.0575, 0.0334],
                  [0.0194, 0.0339, 0.0497, 0.0000, 0.0497, 0.0339, 0.0194],
                  [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
                  [0.0194, 0.0339, 0.0497, 0.0000, 0.0497, 0.0339, 0.0194],
                  [0.0334, 0.0575, 0.0339, 0.0000, 0.0339, 0.0575, 0.0334],
                  [0.0155, 0.0334, 0.0194, 0.0000, 0.0194, 0.0334, 0.0155]]]])
    """
    # TODO: Recompute doctest
    KORNIA_CHECK_SHAPE(input, ["B", "C", "H", "W"])

    gradients: torch.Tensor = spatial_gradient(input, grads_mode)
    dx: torch.Tensor = gradients[:, :, 0]
    dy: torch.Tensor = gradients[:, :, 1]

    dx2: torch.Tensor = gaussian_blur2d(dx**2, (7, 7), (1.0, 1.0))
    dy2: torch.Tensor = gaussian_blur2d(dy**2, (7, 7), (1.0, 1.0))
    dxy: torch.Tensor = gaussian_blur2d(dx * dy, (7, 7), (1.0, 1.0))

    det_m: torch.Tensor = dx2 * dy2 - dxy * dxy
    trace_m: torch.Tensor = dx2 + dy2

    e1: torch.Tensor = 0.5 * (trace_m + torch.sqrt(
        (trace_m**2 - 4 * det_m).abs()))
    e2: torch.Tensor = 0.5 * (trace_m - torch.sqrt(
        (trace_m**2 - 4 * det_m).abs()))

    scores: torch.Tensor = torch.min(e1, e2)

    if sigmas is not None:
        scores = scores * sigmas.pow(4).view(-1, 1, 1, 1)

    return scores
Exemplo n.º 19
0
def harris_response(
    input: torch.Tensor,
    k: Union[torch.Tensor, float] = 0.04,
    grads_mode: str = 'sobel',
    sigmas: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    r"""Compute the Harris cornerness function.

    Function does not do any normalization or nms. The response map is computed according the following formulation:

    .. math::
        R = max(0, det(M) - k \cdot trace(M)^2)

    where:

    .. math::
        M = \sum_{(x,y) \in W}
        \begin{bmatrix}
            I^{2}_x & I_x I_y \\
            I_x I_y & I^{2}_y \\
        \end{bmatrix}

    and :math:`k` is an empirically determined constant
    :math:`k ∈ [ 0.04 , 0.06 ]`

    Args:
        input: input image with shape :math:`(B, C, H, W)`.
        k: the Harris detector free parameter.
        grads_mode: can be ``'sobel'`` for standalone use or ``'diff'`` for use on Gaussian pyramid.
        sigmas: coefficients to be multiplied by multichannel response. Should be shape of :math:`(B)`
          It is necessary for performing non-maxima-suppression across different scale pyramid levels.
          See `vlfeat <https://github.com/vlfeat/vlfeat/blob/master/vl/covdet.c#L874>`_.

    Return:
        the response map per channel with shape :math:`(B, C, H, W)`.

    Example:
        >>> input = torch.tensor([[[
        ...    [0., 0., 0., 0., 0., 0., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 1., 1., 1., 1., 1., 0.],
        ...    [0., 0., 0., 0., 0., 0., 0.],
        ... ]]])  # 1x1x7x7
        >>> # compute the response map
        harris_response(input, 0.04)
        tensor([[[[0.0012, 0.0039, 0.0020, 0.0000, 0.0020, 0.0039, 0.0012],
                  [0.0039, 0.0065, 0.0040, 0.0000, 0.0040, 0.0065, 0.0039],
                  [0.0020, 0.0040, 0.0029, 0.0000, 0.0029, 0.0040, 0.0020],
                  [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
                  [0.0020, 0.0040, 0.0029, 0.0000, 0.0029, 0.0040, 0.0020],
                  [0.0039, 0.0065, 0.0040, 0.0000, 0.0040, 0.0065, 0.0039],
                  [0.0012, 0.0039, 0.0020, 0.0000, 0.0020, 0.0039, 0.0012]]]])
    """
    # TODO: Recompute doctest
    KORNIA_CHECK_SHAPE(input, ["B", "C", "H", "W"])

    if sigmas is not None:
        if not isinstance(sigmas, torch.Tensor):
            raise TypeError(
                f"sigmas type is not a torch.Tensor. Got {type(sigmas)}")
        if (not len(sigmas.shape) == 1) or (sigmas.size(0) != input.size(0)):
            raise ValueError(
                f"Invalid sigmas shape, we expect B == input.size(0). Got: {sigmas.shape}"
            )

    gradients: torch.Tensor = spatial_gradient(input, grads_mode)
    dx: torch.Tensor = gradients[:, :, 0]
    dy: torch.Tensor = gradients[:, :, 1]

    # compute the structure tensor M elements

    dx2: torch.Tensor = gaussian_blur2d(dx**2, (7, 7), (1.0, 1.0))
    dy2: torch.Tensor = gaussian_blur2d(dy**2, (7, 7), (1.0, 1.0))
    dxy: torch.Tensor = gaussian_blur2d(dx * dy, (7, 7), (1.0, 1.0))

    det_m: torch.Tensor = dx2 * dy2 - dxy * dxy
    trace_m: torch.Tensor = dx2 + dy2

    # compute the response map
    scores: torch.Tensor = det_m - k * (trace_m**2)

    if sigmas is not None:
        scores = scores * sigmas.pow(4).view(-1, 1, 1, 1)

    return scores
Exemplo n.º 20
0
 def forward(self, input: torch.Tensor, eps: float = 1e-10) -> torch.Tensor:
     KORNIA_CHECK_SHAPE(input, ["B", "1", "32", "32"])
     descr = self.desc_norm(self.layers(input) + eps)
     descr = descr.view(descr.size(0), -1)
     return descr
Exemplo n.º 21
0
 def forward(self, input: torch.Tensor) -> torch.Tensor:
     KORNIA_CHECK_SHAPE(input, ["B", "1", "32", "32"])
     x_norm: torch.Tensor = self._normalize_input(input)
     x_features: torch.Tensor = self.features(x_norm)
     x_out = x_features.view(x_features.size(0), -1)
     return F.normalize(x_out, dim=1)