Exemplo n.º 1
0
            def write(gmeasure, name):
                # do the sampling
                gvessels, gtumor = detailedo2.OpenVesselAndTumorGroups(
                    po2group)
                smpl, fluxes = detailedo2.sampleVessels(
                    po2group, gvessels, gtumor, sample_length)
                #cons = dataman.detailedPO2_consumption(po2group, gtumor)
                cons = dataman.obtain_data('detailedPO2_consumption', po2group,
                                           gtumor)
                # get the raw data, just for the consumption flux
                po2vessels, ld, po2field, parameters = dataman.obtain_data(
                    'detailedPO2', po2group)
                avgCons = np.asarray(myutils.largeDatasetAverage(cons),
                                     dtype=np.float64)
                fluxes['Jout_cons'] = avgCons * np.product(
                    cons.shape) * (ld.scale * 1.e-4)**3
                del po2vessels, po2field, ld

                gmeasure = gmeasure.create_group(name)
                for k, v in smpl.iteritems():
                    gmeasure.create_dataset('smpl_' + k,
                                            data=v,
                                            compression=9,
                                            dtype=np.float32)
                for k, v in fluxes.iteritems():
                    gmeasure.create_dataset('flux_' + k,
                                            data=v)  # scalar dataset
Exemplo n.º 2
0
def GenerateSingleCapillarySamples(dataman,
                                   po2group,
                                   cachelocation,
                                   properties=['po2', 'sat', 'extpo2']):
    vesselgroup, _ = detailedo2.OpenVesselAndTumorGroups(po2group)
    smpl = dict(
        weight=dataman.obtain_data('basic_vessel_samples', 'weight',
                                   vesselgroup, sample_length),
        pos=dataman.obtain_data('basic_vessel_samples', 'position',
                                vesselgroup, sample_length),
    )
    for prop in properties:
        smpl[prop] = dataman.obtain_data('detailedPO2_samples', prop, po2group,
                                         sample_length, 1, cachelocation)
    # sort by x-position
    x = smpl['pos'][:, 0]
    ordering = np.argsort(x)
    pos = smpl['pos'][ordering, ...]
    x0 = 0
    dv = (pos[-1] - x0)
    dv /= np.linalg.norm(dv)
    x = np.asarray(map(lambda x_: np.dot(dv, x_ - x0), pos))
    for k, v in smpl.items():
        smpl[k] = v[ordering]
    smpl['x'] = x
    return smpl
Exemplo n.º 3
0
            def write(gmeasure, name):
                samplelocation = MakeSampleLocation(po2group)
                gvessels, gtumor = detailedo2.OpenVesselAndTumorGroups(
                    po2group)
                smpl = dataman.obtain_data('detailedPO2_peff_samples',
                                           po2group, sample_length, None,
                                           samplelocation)

                data, = analyzeGeneral.GenerateRadialDistributions(
                    dataman, gvessels, gtumor, sample_length, bins_spec,
                    distance_distribution_name, None,
                    [(smpl, analyzeGeneral.radialAvgPerVessels)])
                data.write(gmeasure, name)
Exemplo n.º 4
0
 def read(gmeasure, name):
     gmeasure = gmeasure[name]
     if dataname == 'detailedPO2_samples':
         if prop == 'gtv':
             parameters = dataman.obtain_data(
                 'detailedPO2Parameters', po2group)
             #po2 = dataman.obtain_data('detailedPO2_samples','po2', *args[1:])
             #extpo2 = dataman.obtain_data('detailedPO2_samples','extpo2', *args[1:])
             #return (po2-extpo2)/(parameters['grid_lattice_const']*parameters.get('transvascular_ring_size',0.5))
             gvessels, gtumor = detailedo2.OpenVesselAndTumorGroups(
                 po2group)
             jtv = dataman.obtain_data('detailedPO2_samples', 'jtv',
                                       *args[1:])
             #radius = dataman.obtain_data('basic_vessel_samples', 'radius', gvessels, sample_length)
             #radius = radius * (60.e-4*math.pi*2.* parameters['kD_tissue']*parameters['alpha_t'])
             radius = (
                 60.e-4 *
                 parameters.get('D_tissue',
                                parameters.get('kD_tissue', None)) *
                 parameters.get('solubility_tissue',
                                parameters.get('alpha_t', None)))
             gtv = jtv / radius
             return gtv
         elif prop == 'sat':
             po2 = dataman.obtain_data('detailedPO2_samples', 'po2',
                                       *args[1:])
             parameters = dataman.obtain_data(
                 'detailedPO2Parameters', po2group)
             return detailedo2.PO2ToSaturation(po2, parameters)
         else:
             ds = gmeasure['smpl_' + prop]
             ds = ds[...] if every is None else ds[::every]
             return ds
     else:
         keys = filter(lambda k: k.startswith('flux_'),
                       gmeasure.keys())
         fluxes = dict(map(lambda k: (k[5:], gmeasure[k][()]),
                           keys))
         fluxes['e1'] = abs(
             100. * (fluxes['Jin_root'] - fluxes['Jout_root'] -
                     fluxes['Jout_tv']) / fluxes['Jin_root'])
         fluxes['e2'] = abs(
             100. *
             (fluxes['Jin_root'] - fluxes['Jout_root'] -
              fluxes['Jout_cons'] - fluxes.get('tv_cons', 0.)) /
             fluxes['Jin_root'])
         fluxes['e3'] = abs(
             100. * (fluxes['Jout_tv'] - fluxes['Jout_cons'] -
                     fluxes.get('tv_cons', 0.)) / fluxes['Jout_tv'])
         return fluxes
Exemplo n.º 5
0
            def write(gmeasure, name):
                samplelocation = MakeSampleLocation(po2group)
                gvessels, gtumor = detailedo2.OpenVesselAndTumorGroups(
                    po2group)
                peff = dataman.obtain_data('detailedPO2_peff_samples',
                                           po2group, sample_length, None,
                                           samplelocation)
                rad = dataman.obtain_data('basic_vessel_samples', 'radius',
                                          gvessels, sample_length)
                peff = peff * math.pi * 2. * rad

                data, = analyzeGeneral.GenerateRadialDistributions(
                    dataman, gvessels, gtumor, sample_length, bins_spec,
                    distance_distribution_name, None,
                    [(peff, analyzeGeneral.radialAvgPerVolume)])
                data.write(gmeasure, name)
Exemplo n.º 6
0
    def write(gmeasure, groupname):
        gvessels, gtumor = detailedo2.OpenVesselAndTumorGroups(po2group)
        parameters = dataman.obtain_data('detailedPO2Parameters', po2group)
        vessels = dataman.obtain_data(
            'vessel_graph', gvessels,
            ['flow', 'pressure', 'position', 'flags', 'hematocrit'])
        pos = vessels['position']
        press = vessels['pressure']
        flow = vessels['flow']
        flags = vessels['flags']
        hema = vessels['hematocrit']
        po2vessels = np.asarray(po2group['po2vessels'])
        hema = np.column_stack((hema, hema))
        conc = detailedo2.PO2ToConcentration(po2vessels, hema, parameters)
        #sat  = detailedo2.PO2ToSaturation(po2vessels, parameters)
        conc_diff = np.abs(conc[:, 1] - conc[:, 0])
        conc = np.average(conc, axis=1)
        flow_diff = 0.5 * flow * conc_diff
        flow = flow * conc
        roots = set(gvessels['nodes/roots'][...])
        del hema
        del conc
        del conc_diff
        del po2vessels

        if gtumor:
            ldtumor = dataman.obtain_data('ld', gtumor.file)
            dist = dataman.obtain_data('fieldvariable', gtumor.file,
                                       'theta_tumor', gtumor.name)
            dist = krebsutils.sample_field(pos,
                                           dist,
                                           ldtumor,
                                           linear_interpolation=True)
            dist = dist - 0.5  # is greater 0 inside the tumor?!

        total_flow_in, total_flow_out = 0., 0.
        flow_in, flow_out = 0., 0.
        flow_in_err, flow_out_err, total_flow_in_err, total_flow_out_err = 0., 0., 0., 0.
        for i, (a, b) in enumerate(vessels.edgelist):
            if not (flags[i] & krebsutils.CIRCULATED): continue
            if gtumor and dist[a] < 0 and dist[b] > 0:  # b is in the tumor
                if press[a] < press[b]:
                    flow_out += flow[i]
                    flow_out_err += flow_diff[i]
                else:
                    flow_in += flow[i]
                    #print 'tumor inflow of sat', sat[i]
                    flow_in_err += flow_diff[i]
            elif gtumor and dist[a] > 0 and dist[b] < 0:  # a is in the tumor
                if press[a] > press[b]:
                    flow_out += flow[i]
                    flow_out_err += flow_diff[i]
                else:
                    flow_in += flow[i]
                    #print 'tumor inflow of sat', sat[i]
                    flow_in_err += flow_diff[i]
            if (a in roots or b in roots):
                if flags[i] & krebsutils.ARTERY:
                    #print 'total inflow of sat', sat[i]
                    total_flow_in += flow[i]
                    total_flow_in_err += flow_diff[i]
                elif flags[i] & krebsutils.VEIN:
                    #print 'total inflow of sat', sat[i]
                    total_flow_out += flow[i]
                    total_flow_out_err += flow_diff[i]

        Err = lambda a, b, da, db: abs(1.0 / a - (a - b) / a / a) * da + abs(
            1.0 / a) * db

        res = dict(tumor_o2_in=flow_in,
                   tumor_o2_out=flow_out,
                   total_o2_out=total_flow_out,
                   total_o2_in=total_flow_in,
                   oef_total=(total_flow_in - total_flow_out) / total_flow_in,
                   oef_tumor=(flow_in - flow_out) / flow_in,
                   flow_in_err=flow_in_err,
                   flow_out_err=flow_out_err,
                   total_flow_in_err=total_flow_in_err,
                   total_flow_out_err=total_flow_out_err,
                   oef_total_err=Err(total_flow_in, total_flow_out,
                                     total_flow_in_err, total_flow_out_err),
                   oef_err=Err(flow_in, flow_out, flow_in_err, flow_out_err))
        #print 'computed oef: '
        #pprint.pprint(res)
        g = gmeasure.create_group(groupname)
        for k, v in res.iteritems():
            g.create_dataset(k, data=v)
Exemplo n.º 7
0
    def obtain_data(self, dataman, dataname, *args):
        if dataname == 'detailedPO2_peff_samples':
            po2group, sample_length, every, cachelocation = args
            gvessels, gtumor = detailedo2.OpenVesselAndTumorGroups(po2group)

            def read(gmeasure, name):
                ds = gmeasure[name]
                return ds[...] if every is None else ds[::every]

            def write(gmeasure, name):
                samplelocation = MakeSampleLocation(po2group)
                parameters = dataman.obtain_data('detailedPO2Parameters',
                                                 po2group)
                rad = dataman.obtain_data('basic_vessel_samples', 'radius',
                                          gvessels, sample_length)
                hema = dataman.obtain_data('basic_vessel_samples',
                                           'hematocrit', gvessels,
                                           sample_length)
                po2 = dataman.obtain_data('detailedPO2_samples', 'po2',
                                          po2group, sample_length, 1,
                                          samplelocation)
                mtc = detailedo2.computeMassTransferCoefficient(
                    rad, parameters)
                blood_solubility = parameters.get(
                    'solubility_plasma', parameters.get('alpha_p', None))
                c_o2_total = detailedo2.PO2ToConcentration(
                    po2, hema, parameters)
                c_o2_plasma = detailedo2.PO2ToConcentration(
                    po2, np.zeros_like(hema), parameters
                )  # to get the o2 conc. in plasma i just set the amount of RBCs to zero
                c_o2_plasma *= (
                    1.0 - hema
                )  # and reduce the concentration according to the volume fraction of plasma
                beta_factor = c_o2_plasma / c_o2_total
                peff = (1.0 / blood_solubility) * mtc * beta_factor

                #        print 'po2', np.average(po2)
                #        print 'mtc', np.average(mtc)
                #        print 'hema', np.average(hema)
                #        print 'blood_solubility', blood_solubility
                #        print 'c_o2_total', np.average(c_o2_total)
                #        print 'c_o2_plasma', np.average(c_o2_plasma)
                #        print 'peff', np.average(peff)
                #        print 'beta_factor', np.average(beta_factor)

                gmeasure.create_dataset(name, data=peff, compression=9)

            version_id = myutils.checksum(sample_length, 1, getuuid_(po2group))
            ret = myutils.hdf_data_caching(
                read, write, cachelocation[0],
                (cachelocation[1], 'samples_and_fluxes', 'Peff'),
                (None, None, version_id))
            return ret

        elif dataname == 'detailedPO2_peff_radial':
            po2group, sample_length, bins_spec, distance_distribution_name, cachelocation = args

            # we assume that there is a tumor. without this measurement makes little sense

            def read(gmeasure, name):
                return myutils.MeanValueArray.read(gmeasure[name])

            def write(gmeasure, name):
                samplelocation = MakeSampleLocation(po2group)
                gvessels, gtumor = detailedo2.OpenVesselAndTumorGroups(
                    po2group)
                smpl = dataman.obtain_data('detailedPO2_peff_samples',
                                           po2group, sample_length, None,
                                           samplelocation)

                data, = analyzeGeneral.GenerateRadialDistributions(
                    dataman, gvessels, gtumor, sample_length, bins_spec,
                    distance_distribution_name, None,
                    [(smpl, analyzeGeneral.radialAvgPerVessels)])
                data.write(gmeasure, name)

            version = myutils.checksum(2, getuuid_(po2group))
            ret = analyzeGeneral.HdfCacheRadialDistribution(
                (read, write), 'Peff', bins_spec, distance_distribution_name,
                cachelocation, version)
            return ret

        # IDEA: store config stuff like sample length and distance distribution as member of the data handler for less call args
        # or store it in a common config instance.
        # Then allow to obtain a temporary handle on data which knows its GUID for a quick accurate check if data has changed.
        # The handle probably would have to obtain the GUID from disk but this is it.
        elif dataname == 'detailedPO2_peffSrho_radial':
            po2group, sample_length, bins_spec, distance_distribution_name, cachelocation = args

            def read(gmeasure, name):
                return myutils.MeanValueArray.read(gmeasure[name])

            def write(gmeasure, name):
                samplelocation = MakeSampleLocation(po2group)
                gvessels, gtumor = detailedo2.OpenVesselAndTumorGroups(
                    po2group)
                peff = dataman.obtain_data('detailedPO2_peff_samples',
                                           po2group, sample_length, None,
                                           samplelocation)
                rad = dataman.obtain_data('basic_vessel_samples', 'radius',
                                          gvessels, sample_length)
                peff = peff * math.pi * 2. * rad

                data, = analyzeGeneral.GenerateRadialDistributions(
                    dataman, gvessels, gtumor, sample_length, bins_spec,
                    distance_distribution_name, None,
                    [(peff, analyzeGeneral.radialAvgPerVolume)])
                data.write(gmeasure, name)

            version = myutils.checksum(2, getuuid_(
                po2group))  # this should actually depend on the samples
            ret = analyzeGeneral.HdfCacheRadialDistribution(
                (read, write), 'PeffSrho', bins_spec,
                distance_distribution_name, cachelocation, version)
            return ret

        assert False
Exemplo n.º 8
0
            def write(gmeasure, name):
                gvessels, gtumor = detailedo2.OpenVesselAndTumorGroups(
                    po2group)
                weight_smpl = dataman.obtain_data('basic_vessel_samples',
                                                  'weight', gvessels,
                                                  sample_length)
                flags = dataman.obtain_data('basic_vessel_samples', 'flags',
                                            gvessels, sample_length)
                # get teh radial distance function (either distance from tumor border or distance from center)
                dist_smpl, distmap, mask, tumor_ld = dataman.obtain_data(
                    'distancemap_samples', gvessels, gtumor, sample_length,
                    distance_distribution_name, None)
                # tumor_ld might actually be a unrelated lattice

                #filter uncirculated
                mask = mask & myutils.bbitwise_and(flags,
                                                   krebsutils.CIRCULATED)
                dist_smpl = dist_smpl[mask]
                weight_smpl = weight_smpl[mask]

                bins = bins_spec.arange()
                gmeasure = gmeasure.create_group(name)

                for name in ['po2', 'extpo2', 'jtv', 'sat', 'gtv', 'dS_dx']:
                    smpl = dataman.obtain_data('detailedPO2_samples', name,
                                               po2group, sample_length, None,
                                               samplelocation)
                    myutils.MeanValueArray.fromHistogram1d(
                        bins, dist_smpl, smpl[mask],
                        w=weight_smpl).write(gmeasure, name)
                del smpl

                _, po2ld, po2field, parameters = dataman.obtain_data(
                    'detailedPO2', po2group)
                po2field = krebsutils.resample_field(np.asarray(po2field),
                                                     po2ld.worldBox,
                                                     tumor_ld.shape,
                                                     tumor_ld.worldBox,
                                                     order=1,
                                                     mode='nearest')
                myutils.MeanValueArray.fromHistogram1d(bins, distmap.ravel(),
                                                       po2field.ravel()).write(
                                                           gmeasure,
                                                           'po2_tissue')
                del po2field

                uptakefield = detailedo2.computeO2Uptake(po2group, gtumor)
                uptakefield = krebsutils.resample_field(uptakefield,
                                                        po2ld.worldBox,
                                                        tumor_ld.shape,
                                                        tumor_ld.worldBox,
                                                        order=1,
                                                        mode='nearest')
                myutils.MeanValueArray.fromHistogram1d(
                    bins, distmap.ravel(),
                    uptakefield.ravel()).write(gmeasure, 'mro2')
                del uptakefield

                hema = dataman.obtain_data('basic_vessel_samples',
                                           'hematocrit', gvessels,
                                           sample_length)[mask]
                sat = dataman.obtain_data('detailedPO2_samples', 'sat',
                                          po2group, sample_length, None,
                                          samplelocation)[mask]
                rad = dataman.obtain_data('basic_vessel_samples', 'radius',
                                          gvessels, sample_length)[mask]
                hbvolume = weight_smpl * rad * rad * math.pi * hema
                vol_per_bin = myutils.MeanValueArray.fromHistogram1d(
                    bins, distmap.ravel(), np.ones_like(
                        distmap.ravel())).cnt * (tumor_ld.scale**3)
                tmp = myutils.MeanValueArray.fromHistogram1d(
                    bins, dist_smpl, hbvolume * sat)
                tmp.cnt = vol_per_bin.copy()
                tmp.write(gmeasure, 'vfhb_oxy')
                tmp = myutils.MeanValueArray.fromHistogram1d(
                    bins, dist_smpl, hbvolume * (1. - sat))
                tmp.cnt = vol_per_bin.copy()
                tmp.write(gmeasure, 'vfhb_deoxy')
                del tmp, hbvolume, vol_per_bin
Exemplo n.º 9
0
            def write(gmeasure, measurename):
                assert prop == measurename
                gvessels, gtumor = detailedo2.OpenVesselAndTumorGroups(
                    po2group)
                if prop in ['po2', 'sat', 'gtv', 'jtv']:
                    w = dataman.obtain_data('basic_vessel_samples', 'weight',
                                            gvessels, sample_length)
                    d = dataman.obtain_data('detailedPO2_samples', prop,
                                            po2group, sample_length, 1,
                                            samplelocation)
                    gmeasure.create_dataset(prop,
                                            data=myutils.WeightedAverageStd(
                                                d, weights=w))
                elif prop in ['sat_vein', 'sat_capi', 'sat_art']:
                    w = dataman.obtain_data('basic_vessel_samples', 'weight',
                                            gvessels, sample_length)
                    d = dataman.obtain_data('detailedPO2_samples', 'sat',
                                            po2group, sample_length, 1,
                                            samplelocation)
                    f = dataman.obtain_data('basic_vessel_samples', 'flags',
                                            gvessels, sample_length)
                    mask = ~myutils.bbitwise_and(
                        f, krebsutils.WITHIN_TUMOR) & myutils.bbitwise_and(
                            f, krebsutils.CIRCULATED)
                    m = {
                        'sat_vein': krebsutils.VEIN,
                        'sat_capi': krebsutils.CAPILLARY,
                        'sat_art': krebsutils.ARTERY
                    }
                    mask &= myutils.bbitwise_and(f, m[prop])
                    d, w = d[mask], w[mask]
                    gmeasure.create_dataset(prop,
                                            data=myutils.WeightedAverageStd(
                                                d, weights=w))
                elif prop in [
                        'e1', 'e2', 'e3', 'Jin_root', 'Jout_root', 'Jout_tv',
                        'tv_cons', 'Jout_cons'
                ]:
                    d = dataman.obtain_data('detailedPO2_total_fluxes', prop,
                                            po2group, sample_length, 1,
                                            samplelocation)
                    gmeasure.create_dataset(prop, data=[d[prop], 0])
                elif prop == 'po2_tissue':
                    _, po2ld, po2field, parameters = dataman.obtain_data(
                        'detailedPO2', po2group)
                    d = myutils.largeDatasetAverageAndStd(po2field)
                    gmeasure.create_dataset(prop, data=d)
                elif prop == 'mro2':
                    uptakefield = detailedo2.computeO2Uptake(po2group, gtumor)
                    d = myutils.largeDatasetAverageAndStd(uptakefield)
                    gmeasure.create_dataset(prop, data=d)
                elif prop in ('sat_via_hb_ratio', 'vfhb_oxy', 'vfhb_deoxy',
                              'vfhb'):
                    weight = dataman.obtain_data('basic_vessel_samples',
                                                 'weight', gvessels,
                                                 sample_length)
                    flags = dataman.obtain_data('basic_vessel_samples',
                                                'flags', gvessels,
                                                sample_length)
                    mask = myutils.bbitwise_and(flags, krebsutils.CIRCULATED)
                    hema = dataman.obtain_data('basic_vessel_samples',
                                               'hematocrit', gvessels,
                                               sample_length)[mask]
                    sat = dataman.obtain_data('detailedPO2_samples', 'sat',
                                              po2group, sample_length, None,
                                              samplelocation)[mask]
                    rad = dataman.obtain_data('basic_vessel_samples', 'radius',
                                              gvessels, sample_length)[mask]
                    weight = weight[mask]
                    hbvolume = weight * rad * rad * math.pi * hema
                    ld = krebsutils.read_lattice_data_from_hdf(
                        po2group['field_ld'])
                    volume = np.product(ld.GetWorldSize())
                    if prop == 'sat_via_hb_ratio':
                        result = np.sum(hbvolume * sat) / np.sum(hbvolume)
                    elif prop == 'vfhb_oxy':
                        result = np.sum(hbvolume * sat) / volume
                    elif prop == 'vfhb_deoxy':
                        result = np.sum(hbvolume * (1. - sat)) / volume
                    elif prop == 'vfhb':
                        result = np.sum(hbvolume) / volume
                    gmeasure.create_dataset(prop, data=[result, 0.])
                elif prop in ('chb_oxy', 'chb_deoxy', 'chb'):
                    m = {
                        'chb_oxy': 'vfhb_oxy',
                        'chb_deoxy': 'vfhb_deoxy',
                        'chb': 'vfhb'
                    }
                    result = dataman.obtain_data('detailedPO2_global', m[prop],
                                                 po2group, sample_length,
                                                 cachelocation)
                    result = result * detailedo2.chb_of_rbcs
                    gmeasure.create_dataset(prop, data=[result, 0.])
                elif prop == 'mro2_by_j':
                    fluxes = dataman.obtain_data('detailedPO2_total_fluxes',
                                                 prop, po2group, sample_length,
                                                 1)
                    ld = krebsutils.read_lattice_data_from_hdf(
                        po2group['field_ld'])
                    worldbb = ld.worldBox
                    result = fluxes['Jout_tv'] / np.prod(worldbb[1] -
                                                         worldbb[0]) * 1.e12
                    gmeasure.create_dataset(prop, data=[result, 0.])
                elif prop == 'oef':
                    fluxes = dataman.obtain_data('detailedPO2_total_fluxes',
                                                 prop, po2group, sample_length,
                                                 1, samplelocation)
                    result = (fluxes['Jin_root'] -
                              fluxes['Jout_root']) / fluxes['Jin_root']
                    gmeasure.create_dataset(prop, data=[result, 0.])

                else:
                    assert False