Exemplo n.º 1
0
    def run(self, simu_path, pool_folder, eval_results_path):
        """
        """

        nparams = len(pool_folder)
        plog = self.get_param_from_log(simu_path)
        nsimu = int(plog['nsimu'])
        param_name = plog["parameter to explore name"]
        param = self.get_param(pool_folder)

        kt_plate = []

        logger.info("Running processes on each pool")
        for i, simudir in enumerate(sorted(pool_folder)):

            logger.info(color("Running processes on pool called: %s" % os.path.split(simudir)[-1], 'BOLD'))

            p = Process(results_path=simudir)
            resu = p.evaluate(name="Mitotic Plate", draw=False, verbose=False)

            kt_plate.append(resu)

        # Configure and plot the graph
        logger.info("Plotting results")
        timelapse = np.arange(0, plog['duration'], plog['dt'])

        plot_data = {}
        plot_data['title'] = "Mitotic plate formation with %s variable" % param_name
        plot_data['xaxis'] = {'data': timelapse, 'label': 'Time (second)'}
        plot_data['yaxis'] = {'label': 'Dispersion measure (relative to the spindle length)', 'axis': []}
        plot_data['error'] = False
        plot_data['legend'] = True
        # plot_data['limit_y_min'] = 0

        # Draw parameters box
        plot_data["params_box"] = [{'name': "Name", 'data': plog["name"]},
                                   {'name': "Simulations number", 'data': nsimu},

                             ]

        # User matplotlib to get color gradient
        cm = plt.get_cmap('gist_rainbow')

        for i, resu in enumerate(kt_plate):

            plot_color = cm(1. * i / nparams)

            plot_data['yaxis']['axis'].append({'data': resu['dispersion'],
                                               'color': plot_color,
                                               'legend': "%s" % resu['params'][param_name]
                                    })

        dic_plot(plot_data, os.path.join(eval_results_path, "Mitotic_Plate_Formation.svg"))

        # Now we gonna plote plate formation according to parameter explored
        plot_data['yaxis'] = {'label': 'Dispersion measure (relative to the spindle length)', 'axis': []}
        plot_data['xaxis'] = {'data': [], 'label': param_name}
        plot_data['legend'] = False
        plot_data["params_box"].append({'name': 'Infos', 'data': 'Dispersion measure is the mean to the last 30 sec before anaphase trigger'})

        yaxisparam = []
        xaxisparam = []
        for i, resu in enumerate(kt_plate):

            plot_color = cm(1. * i / nparams)

            # Compute mean plate rate see on last 30 second before anaphase
            start = (param['t_A'] - 30) / param['dt']
            stop = (param['t_A']) / param['dt']

            # Remove nan value
            disp = resu['dispersion'][start:stop]
            disp = disp[~np.isnan(disp)]
            yaxisparam.append(disp.mean())
            xaxisparam.append(resu['params'][param_name])

        plot_data['xaxis']['data'] = np.array(xaxisparam)
        plot_data['yaxis']['axis'].append({'data': np.array(yaxisparam),
                                           'color': 'blue',
                                          })

        dic_plot(plot_data, os.path.join(eval_results_path, "Mitotic_Plate_Formation2.svg"))

        return kt_plate
Exemplo n.º 2
0
    - core : main simulation
    - gui: a subpackage with a GUI of the simulation
    - analysis : Data processing, analysis, batch scripts
"""
__all__ = ["core", "analysis", "gui"]

import logging
import os
import sys
import numpy

from kt_simul.utils.color import color

# Setup logging

logformat = color('%(asctime)s', 'BLUE') + ':'
logformat += color('%(levelname)s', 'RED') + ':'
logformat += color('%(name)s', 'YELLOW') + ':'
logformat += color('%(message)s', 'ENDC')
logging.basicConfig(level=logging.DEBUG,
                    format=logformat,
                    datefmt='%Y-%m-%d %H:%M:%S')

import pyximport

# Compile Cython file
if os.name == 'nt':
    if os.environ.has_key('CPATH'):
        os.environ['CPATH'] = os.environ['CPATH'] + numpy.get_include()
    else:
        os.environ['CPATH'] = numpy.get_include()