def train_model(model, model_name, x_train, x_test, y_train, y_test):
    # Pre-process dataset
    x_test = x_test.astype('float32')
    x_test /= 255
    x, y = load_data_per_node(x_train,
                              y_train,
                              DATASET_SIZE,
                              backup_worker_id=BACKUP_WORKER_ID,
                              backup_frac=BACKUP_FRAC)

    callbacks = [BroadcastGlobalVariablesCallback()]

    # Log to tensorboard for now
    if current_rank() == 0:
        logdir = "tensorboard-logs/{}/".format(model_name) + \
            datetime.now().strftime("%Y%m%d-%H%M%S")
        tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)
        callbacks.append(tensorboard_callback)

    # Convert class vectors to binary class matrices.
    y_test = tf.keras.utils.to_categorical(y_test, num_classes)

    # train the model
    model.fit(x,
              y,
              batch_size=batch_size,
              epochs=epochs,
              validation_data=(x_test, y_test),
              shuffle=False,
              verbose=1,
              callbacks=callbacks)
Exemplo n.º 2
0
def train_model(model, train_dataset, val_dataset,  epochs):
    """### Train Our Model With Cats & Dogs Train (splitted) Data Set"""

    # Early stopping & checkpointing the best model in ../working dir & restoring that as our model for prediction
#    cb_early_stopper = EarlyStopping(
#        monitor='val_loss', patience=EARLY_STOP_PATIENCE)
#    cb_checkpointer = ModelCheckpoint(
#        filepath='../working/best.hdf5', monitor='val_loss', save_best_only=True, mode='auto')

    # Accumulate history of all permutations (may be for viewing trend) and keep watching for lowest val_loss as final model

    model.fit(
        train_dataset,
        epochs=epochs,
        validation_data=val_dataset,
        callbacks=[BroadcastGlobalVariablesCallback()]
    )
Exemplo n.º 3
0
def train_model(model, dataset, n_epochs=1, batch_size=5000):
    n_shards = current_cluster_size()
    shard_id = current_rank()
    train_data_size = len(dataset['x_train'])

    # calculate the offset for the data of the KungFu node
    shard_size = train_data_size // n_shards
    offset = batch_size * shard_id

    # extract the data for learning of the KungFu node
    x = dataset['x_train'][offset:offset + shard_size]
    y = dataset['y_train'][offset:offset + shard_size]
    # train the model
    model.fit(x,
              y,
              batch_size=batch_size,
              epochs=n_epochs,
              callbacks=[BroadcastGlobalVariablesCallback()],
              validation_data=(dataset['x_val'], dataset['y_val']),
              verbose=2)
Exemplo n.º 4
0
def run(flags_obj):
    """Run ResNet ImageNet training and eval loop using native Keras APIs.

    Args:
        flags_obj: An object containing parsed flag values.

    Raises:
        ValueError: If fp16 is passed as it is not currently supported.

    Returns:
        Dictionary of training and eval stats.
    """
    keras_utils.set_session_config(enable_eager=flags_obj.enable_eager,
                                   enable_xla=flags_obj.enable_xla)

    # Execute flag override logic for better model performance
    if flags_obj.tf_gpu_thread_mode:
        keras_utils.set_gpu_thread_mode_and_count(
            per_gpu_thread_count=flags_obj.per_gpu_thread_count,
            gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
            num_gpus=flags_obj.num_gpus,
            datasets_num_private_threads=flags_obj.datasets_num_private_threads
        )
    common.set_cudnn_batchnorm_mode()

    dtype = flags_core.get_tf_dtype(flags_obj)
    if dtype == tf.float16:
        loss_scale = flags_core.get_loss_scale(flags_obj, default_for_fp16=128)
        policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
            'mixed_float16', loss_scale=loss_scale)
        tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)
        if not keras_utils.is_v2_0():
            raise ValueError('--dtype=fp16 is not supported in TensorFlow 1.')
    elif dtype == tf.bfloat16:
        policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
            'mixed_bfloat16')
        tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)

    data_format = flags_obj.data_format
    if data_format is None:
        data_format = ('channels_first'
                       if tf.test.is_built_with_cuda() else 'channels_last')
    tf.keras.backend.set_image_data_format(data_format)

    preprocessing_seed = 12345

    # pylint: disable=protected-access
    if flags_obj.use_synthetic_data:
        distribution_utils.set_up_synthetic_data()
        input_fn = common.get_synth_input_fn(
            height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
            width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
            num_channels=imagenet_preprocessing.NUM_CHANNELS,
            num_classes=imagenet_preprocessing.NUM_CLASSES,
            dtype=dtype,
            drop_remainder=True)
    else:
        distribution_utils.undo_set_up_synthetic_data()
        input_fn = imagenet_preprocessing.input_fn

    # When `enable_xla` is True, we always drop the remainder of the batches
    # in the dataset, as XLA-GPU doesn't support dynamic shapes.
    drop_remainder = flags_obj.enable_xla

    train_input_dataset = input_fn(
        is_training=True,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
        num_epochs=flags_obj.train_epochs,
        parse_record_fn=imagenet_preprocessing.parse_record,
        datasets_num_private_threads=flags_obj.datasets_num_private_threads,
        dtype=dtype,
        drop_remainder=drop_remainder,
        random_seed=preprocessing_seed,  #addition
        num_workers=current_cluster_size(),  #addition
        worker_ID=current_rank(),  #addition
        tf_data_experimental_slack=flags_obj.tf_data_experimental_slack,
        training_dataset_cache=flags_obj.training_dataset_cache,
    )

    eval_input_dataset = None
    if not flags_obj.skip_eval:
        eval_input_dataset = input_fn(
            is_training=False,
            data_dir=flags_obj.data_dir,
            batch_size=flags_obj.batch_size,
            num_epochs=flags_obj.train_epochs,
            parse_record_fn=imagenet_preprocessing.parse_record,
            dtype=dtype,
            drop_remainder=drop_remainder)

    lr_schedule = 0.1
    if flags_obj.use_tensor_lr:
        lr_schedule = common.PiecewiseConstantDecayWithWarmup(
            batch_size=flags_obj.batch_size,
            epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
            warmup_epochs=common.LR_SCHEDULE[0][1],
            boundaries=list(p[1] for p in common.LR_SCHEDULE[1:]),
            multipliers=list(p[0] for p in common.LR_SCHEDULE),
            compute_lr_on_cpu=True)

    # Build KungFu optimizer
    opt = common.get_optimizer(lr_schedule)
    # logging.info(opt.__dict__)
    optimizer = SynchronousSGDOptimizer(opt, reshape=False, use_locking=True)
    optimizer._hyper = opt._hyper
    # logging.info(optimizer.__dict__)

    if flags_obj.fp16_implementation == 'graph_rewrite':
        # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
        # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
        # which will ensure tf.compat.v2.keras.mixed_precision and
        # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
        # up.
        optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
            optimizer)

    # TODO(hongkuny): Remove trivial model usage and move it to benchmark.
    if flags_obj.use_trivial_model:
        model = trivial_model.trivial_model(imagenet_preprocessing.NUM_CLASSES)
    else:
        model = resnet_model.resnet50(
            num_classes=imagenet_preprocessing.NUM_CLASSES)

    # TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
    # a valid arg for this model. Also remove as a valid flag.

    metrics = (['sparse_categorical_accuracy'])
    metrics.append('sparse_top_k_categorical_accuracy')

    if flags_obj.force_v2_in_keras_compile is not None:
        model.compile(
            loss='sparse_categorical_crossentropy',
            optimizer=optimizer,
            metrics=metrics,
            run_eagerly=flags_obj.run_eagerly,
            experimental_run_tf_function=flags_obj.force_v2_in_keras_compile)
    else:
        model.compile(loss='sparse_categorical_crossentropy',
                      optimizer=optimizer,
                      metrics=metrics,
                      run_eagerly=flags_obj.run_eagerly)

    # adjust number of steps
    cluster_size = current_cluster_size()
    steps_per_epoch = (imagenet_preprocessing.NUM_IMAGES['train'] //
                       flags_obj.batch_size)
    steps_per_epoch = steps_per_epoch // cluster_size

    train_epochs = flags_obj.train_epochs
    callbacks = common.get_callbacks(steps_per_epoch, current_rank(),
                                     cluster_size,
                                     common.learning_rate_schedule)

    # Broadcast variables for KungFu
    callbacks.append(BroadcastGlobalVariablesCallback())

    # Checkpoint callback only on worker 0
    if flags_obj.enable_checkpoint_and_export and current_rank() == 0:
        ckpt_full_path = os.path.join(flags_obj.model_dir,
                                      'model.ckpt-{epoch:04d}')
        callbacks.append(
            tf.keras.callbacks.ModelCheckpoint(ckpt_full_path,
                                               save_weights_only=True))

    if flags_obj.train_steps:
        steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)

    num_eval_steps = (imagenet_preprocessing.NUM_IMAGES['validation'] //
                      flags_obj.batch_size)

    validation_data = eval_input_dataset
    if flags_obj.skip_eval:
        # Only build the training graph. This reduces memory usage introduced by
        # control flow ops in layers that have different implementations for
        # training and inference (e.g., batch norm).
        if flags_obj.set_learning_phase_to_train:
            # TODO(haoyuzhang): Understand slowdown of setting learning phase when
            # not using distribution strategy.
            tf.keras.backend.set_learning_phase(1)
            num_eval_steps = None
            validation_data = None

    history = model.fit(train_input_dataset,
                        epochs=train_epochs,
                        steps_per_epoch=steps_per_epoch,
                        callbacks=callbacks,
                        validation_steps=num_eval_steps,
                        validation_data=validation_data,
                        validation_freq=flags_obj.epochs_between_evals,
                        verbose=2)

    # Checkpoint only on 0th worker
    if flags_obj.enable_checkpoint_and_export and current_rank() == 0:
        if dtype == tf.bfloat16:
            logging.warning(
                "Keras model.save does not support bfloat16 dtype.")
        else:
            # Keras model.save assumes a float32 input designature.
            export_path = os.path.join(flags_obj.model_dir, 'saved_model')
            model.save(export_path, include_optimizer=False)

    eval_output = None
    if not flags_obj.skip_eval:
        eval_output = model.evaluate(eval_input_dataset,
                                     steps=num_eval_steps,
                                     verbose=2)

    stats = common.build_stats(history, eval_output, callbacks)
    return stats
if args.kf_optimizer == 'sync-sgd':
    opt = SynchronousSGDOptimizer(opt)
elif args.kf_optimizer == 'async-sgd':
    opt = PairAveragingOptimizer(opt)
elif args.kf_optimizer == 'sma':
    opt = SynchronousAveragingOptimizer(opt)
else:
    raise RuntimeError('Unknown KungFu optimizer')

mnist_model.compile(loss=tf.losses.SparseCategoricalCrossentropy(),
                    optimizer=opt,
                    metrics=['accuracy'])

# KungFu: insert the global variable broadcast callback.
callbacks = [
    BroadcastGlobalVariablesCallback(),
]

# KungFu: write logs on worker 0.
verbose = 1 if current_rank() == 0 else 0

# Train the model.
# KungFu: adjust number of steps based on number of GPUs.
mnist_model.fit(train_dataset,
                steps_per_epoch=1000 // current_cluster_size(),
                epochs=1,
                callbacks=callbacks,
                verbose=verbose)

# KungFu: run evaluation after all finishes training.
run_barrier()
Exemplo n.º 6
0
# KungFu: wrap distributed optimizers.
if args.kf_optimizer == 'sync-sgd':
    opt = SynchronousSGDOptimizer(opt, with_keras=True)
elif args.kf_optimizer == 'async-sgd':
    opt = PairAveragingOptimizer(opt, with_keras=True)
elif args.kf_optimizer == 'sma':
    opt = SynchronousAveragingOptimizer(opt, with_keras=True)
else:
    raise RuntimeError('unknown optimizer: %s' % name)

model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=opt,
              metrics=['accuracy'])

callbacks = [BroadcastGlobalVariablesCallback(with_keras=True)]

# KungFu: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if current_rank() == 0:
    callbacks.append(
        keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5'))

model.fit(x_train,
          y_train,
          batch_size=batch_size,
          callbacks=callbacks,
          epochs=epochs,
          verbose=1 if current_rank() == 0 else 0,
          validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
Exemplo n.º 7
0
def run(flags_obj):
    """Run ResNet Cifar-10 training and eval loop using native Keras APIs.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
    keras_utils.set_session_config(enable_eager=flags_obj.enable_eager,
                                   enable_xla=flags_obj.enable_xla)

    # Execute flag override logic for better model performance
    if flags_obj.tf_gpu_thread_mode:
        keras_utils.set_gpu_thread_mode_and_count(
            per_gpu_thread_count=flags_obj.per_gpu_thread_count,
            gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
            num_gpus=flags_obj.num_gpus,
            datasets_num_private_threads=flags_obj.datasets_num_private_threads
        )
    common.set_cudnn_batchnorm_mode()

    dtype = flags_core.get_tf_dtype(flags_obj)
    if dtype == 'fp16':
        raise ValueError(
            'dtype fp16 is not supported in Keras. Use the default '
            'value(fp32).')

    data_format = flags_obj.data_format
    if data_format is None:
        data_format = ('channels_first'
                       if tf.test.is_built_with_cuda() else 'channels_last')
    tf.keras.backend.set_image_data_format(data_format)

    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy=flags_obj.distribution_strategy,
        num_gpus=flags_obj.num_gpus,
        num_workers=distribution_utils.configure_cluster(),
        all_reduce_alg=flags_obj.all_reduce_alg,
        num_packs=flags_obj.num_packs)

    if strategy:
        # flags_obj.enable_get_next_as_optional controls whether enabling
        # get_next_as_optional behavior in DistributedIterator. If true, last
        # partial batch can be supported.
        strategy.extended.experimental_enable_get_next_as_optional = (
            flags_obj.enable_get_next_as_optional)

    strategy_scope = distribution_utils.get_strategy_scope(strategy)

    if flags_obj.use_synthetic_data:
        distribution_utils.set_up_synthetic_data()
        input_fn = common.get_synth_input_fn(
            height=cifar_preprocessing.HEIGHT,
            width=cifar_preprocessing.WIDTH,
            num_channels=cifar_preprocessing.NUM_CHANNELS,
            num_classes=cifar_preprocessing.NUM_CLASSES,
            dtype=flags_core.get_tf_dtype(flags_obj),
            drop_remainder=True)
    else:
        distribution_utils.undo_set_up_synthetic_data()
        input_fn = cifar_preprocessing.input_fn

    #train_input_dataset = input_fn(
    #    is_training=True,
    #    data_dir=flags_obj.data_dir,
    #    batch_size=flags_obj.batch_size,
    #    num_epochs=flags_obj.train_epochs,
    #    parse_record_fn=cifar_preprocessing.parse_record,
    #    datasets_num_private_threads=flags_obj.datasets_num_private_threads,
    #    dtype=dtype,
    #    # Setting drop_remainder to avoid the partial batch logic in normalization
    #    # layer, which triggers tf.where and leads to extra memory copy of input
    #    # sizes between host and GPU.
    #    drop_remainder=(not flags_obj.enable_get_next_as_optional))

    # eval_input_dataset = None
    # if not flags_obj.skip_eval:
    #   eval_input_dataset = input_fn(
    #       is_training=False,
    #       data_dir=flags_obj.data_dir,
    #       batch_size=flags_obj.batch_size,
    #       num_epochs=flags_obj.train_epochs,
    #       parse_record_fn=cifar_preprocessing.parse_record)

    (x_train, y_train), (x_test,
                         y_test) = tf.keras.datasets.cifar10.load_data()
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255
    y_train = tf.keras.utils.to_categorical(y_train, num_classes)
    y_test = tf.keras.utils.to_categorical(y_test, num_classes)

    # optimizer = common.get_optimizer()

    opt = tf.keras.optimizers.SGD(learning_rate=0.1)

    logging.info(opt.__dict__)
    optimizer = SynchronousSGDOptimizer(opt, use_locking=True)
    optimizer._hyper = opt._hyper

    logging.info(optimizer.__dict__)

    model = Conv4_model(x_train, num_classes)

    # TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
    # a valid arg for this model. Also remove as a valid flag.
    if flags_obj.force_v2_in_keras_compile is not None:
        model.compile(
            loss='categorical_crossentropy',
            optimizer=optimizer,
            metrics=(['accuracy']),
            run_eagerly=flags_obj.run_eagerly,
            experimental_run_tf_function=flags_obj.force_v2_in_keras_compile)
    else:
        model.compile(loss='categorical_crossentropy',
                      optimizer=optimizer,
                      metrics=(['accuracy']),
                      run_eagerly=flags_obj.run_eagerly)

    cluster_size = current_cluster_size()
    steps_per_epoch = (cifar_preprocessing.NUM_IMAGES['train'] //
                       flags_obj.batch_size)
    steps_per_epoch = steps_per_epoch // cluster_size
    train_epochs = flags_obj.train_epochs

    callbacks = common.get_callbacks(steps_per_epoch, current_rank(),
                                     cluster_size, learning_rate_schedule)
    callbacks.append(BroadcastGlobalVariablesCallback())

    if flags_obj.train_steps:
        steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)

    num_eval_steps = (cifar_preprocessing.NUM_IMAGES['validation'] //
                      flags_obj.batch_size)

    # validation_data = eval_input_dataset
    if flags_obj.skip_eval:
        if flags_obj.set_learning_phase_to_train:
            # TODO(haoyuzhang): Understand slowdown of setting learning phase when
            # not using distribution strategy.
            tf.keras.backend.set_learning_phase(1)
        num_eval_steps = None
        validation_data = None

    tf.compat.v1.logging.info(x_train.shape)
    history = model.fit(x_train,
                        y_train,
                        batch_size=flags_obj.batch_size,
                        epochs=train_epochs,
                        steps_per_epoch=steps_per_epoch,
                        callbacks=callbacks,
                        validation_steps=num_eval_steps,
                        validation_data=(x_test, y_test),
                        validation_freq=flags_obj.epochs_between_evals,
                        verbose=2)
    eval_output = None
    if not flags_obj.skip_eval:
        eval_output = model.evaluate((x_test, y_test),
                                     steps=num_eval_steps,
                                     verbose=2)
    stats = common.build_stats(history, eval_output, callbacks)
    return stats