Exemplo n.º 1
0
def test_closest():
    rng = ensure_rng(4)
    lat = lattice.general(((1, 0), (0.5, sqrt(3) / 2)), norbs=1)
    for i in range(50):
        point = 20 * rng.random_sample(2)
        closest = lat(*lat.closest(point)).pos
        assert np.linalg.norm(point - closest) <= 1 / sqrt(3)
    lat = lattice.general(rng.randn(3, 3), norbs=1)
    for i in range(50):
        tag = rng.randint(10, size=(3, ))
        assert lat.closest(lat(*tag).pos) == tag
Exemplo n.º 2
0
def test_closest():
    np.random.seed(4)
    lat = lattice.general(((1, 0), (0.5, sqrt(3) / 2)))
    for i in range(50):
        point = 20 * np.random.rand(2)
        closest = lat(*lat.closest(point)).pos
        assert np.linalg.norm(point - closest) <= 1 / sqrt(3)
    lat = lattice.general(np.random.randn(3, 3))
    for i in range(50):
        tag = np.random.randint(10, size=(3,))
        assert_equal(lat.closest(lat(*tag).pos), tag)
Exemplo n.º 3
0
def test_general():
    for lat in (lattice.general(((1, 0), (0.5, 0.5))),
                lattice.general(((1, 0), (0.5, sqrt(3)/2)),
                                     ((0, 0), (0, 1/sqrt(3))))):
        for sl in lat.sublattices:
            tag = (-5, 33)
            site = sl(*tag)
            assert tag == sl.closest(site.pos)

    # Test 2D lattice with 1 vector.
    lat = lattice.general([[1, 0]])
    site = lat(0)
    raises(ValueError, lat, 0, 1)
Exemplo n.º 4
0
def test_general():
    for lat in (lattice.general(((1, 0), (0.5, 0.5))),
                lattice.general(((1, 0), (0.5, sqrt(3) / 2)),
                                ((0, 0), (0, 1 / sqrt(3))))):
        for sl in lat.sublattices:
            tag = (-5, 33)
            site = sl(*tag)
            assert tag == sl.closest(site.pos)

    # Test 2D lattice with 1 vector.
    lat = lattice.general([[1, 0]])
    site = lat(0)
    raises(ValueError, lat, 0, 1)
Exemplo n.º 5
0
def test_norbs():
    id_mat = np.identity(2)
    # Monatomic lattices
    assert lattice.general(id_mat).norbs == None
    assert lattice.general(id_mat, norbs=2).norbs == 2
    # Polyatomic lattices
    lat = lattice.general(id_mat, basis=id_mat, norbs=None)
    for l in lat.sublattices:
        assert l.norbs == None
    lat = lattice.general(id_mat, basis=id_mat, norbs=2)
    for l in lat.sublattices:
        assert l.norbs == 2
    lat = lattice.general(id_mat, basis=id_mat, norbs=[1, 2])
    for l, n in zip(lat.sublattices, [1, 2]):
        assert l.norbs == n
    # should raise ValueError for # of norbs different to length of `basis`
    raises(ValueError, lattice.general, id_mat, id_mat, norbs=[])
    raises(ValueError, lattice.general, id_mat, id_mat, norbs=[1, 2, 3])
    # TypeError if Monatomic lattice
    raises(TypeError, lattice.general, id_mat, norbs=[])
    # should raise ValueError if norbs not an integer
    raises(ValueError, lattice.general, id_mat, norbs=1.5)
    raises(ValueError, lattice.general, id_mat, id_mat, norbs=1.5)
    raises(ValueError, lattice.general, id_mat, id_mat, norbs=[1.5, 1.5])
    # test that lattices with different norbs are compared `not equal`
    lat = lattice.general(id_mat, basis=id_mat, norbs=None)
    lat1 = lattice.general(id_mat, basis=id_mat, norbs=1)
    lat2 = lattice.general(id_mat, basis=id_mat, norbs=2)
    assert lat != lat1
    assert lat != lat2
    assert lat1 != lat2
Exemplo n.º 6
0
def test_norbs():
    id_mat = np.identity(2)
    # Monatomic lattices
    assert lattice.general(id_mat).norbs == None
    assert lattice.general(id_mat, norbs=2).norbs == 2
    # Polyatomic lattices
    lat = lattice.general(id_mat, basis=id_mat, norbs=None)
    for l in lat.sublattices:
        assert l.norbs == None
    lat = lattice.general(id_mat, basis=id_mat, norbs=2)
    for l in lat.sublattices:
        assert l.norbs == 2
    lat = lattice.general(id_mat, basis=id_mat, norbs=[1, 2])
    for l, n in zip(lat.sublattices, [1, 2]):
        assert l.norbs == n
    # should raise ValueError for # of norbs different to length of `basis`
    raises(ValueError, lattice.general, id_mat, id_mat, norbs=[])
    raises(ValueError, lattice.general, id_mat, id_mat, norbs=[1, 2, 3])
    # TypeError if Monatomic lattice
    raises(TypeError, lattice.general, id_mat, norbs=[])
    # should raise ValueError if norbs not an integer
    raises(ValueError, lattice.general, id_mat, norbs=1.5)
    raises(ValueError, lattice.general, id_mat, id_mat, norbs=1.5)
    raises(ValueError, lattice.general, id_mat, id_mat, norbs=[1.5, 1.5])
    # test that lattices with different norbs are compared `not equal`
    lat = lattice.general(id_mat, basis=id_mat, norbs=None)
    lat1 = lattice.general(id_mat, basis=id_mat, norbs=1)
    lat2 = lattice.general(id_mat, basis=id_mat, norbs=2)
    assert lat != lat1
    assert lat != lat2
    assert lat1 != lat2
Exemplo n.º 7
0
def test_neighbors():
    lat = lattice.honeycomb(1e-10, norbs=1)
    num_nth_nearest = [len(lat.neighbors(n)) for n in range(5)]
    assert num_nth_nearest == [2, 3, 6, 3, 6]
    lat = lattice.general([(0, 1e8, 0, 0), (0, 0, 1e8, 0)], norbs=1)
    num_nth_nearest = [len(lat.neighbors(n)) for n in range(5)]
    assert num_nth_nearest == [1, 2, 2, 2, 4]
    lat = lattice.chain(1e-10, norbs=1)
    num_nth_nearest = [len(lat.neighbors(n)) for n in range(5)]
    assert num_nth_nearest == 5 * [1]
Exemplo n.º 8
0
def test_wire():
    rng = ensure_rng(5)
    vecs = rng.randn(3, 3)
    vecs[0] = [1, 0, 0]
    center = rng.randn(3)
    lat = lattice.general(vecs, rng.randn(4, 3), norbs=1)
    syst = builder.Builder(lattice.TranslationalSymmetry((2, 0, 0)))
    def wire_shape(pos):
        pos = np.array(pos)
        return np.linalg.norm(pos[1:] - center[1:])**2 <= 8.6**2
    syst[lat.shape(wire_shape, center)] = 0
    sites2 = set(syst.sites())
    syst = builder.Builder(lattice.TranslationalSymmetry((2, 0, 0)))
    syst[lat.wire(center, 8.6)] = 1
    sites1 = set(syst.sites())
    assert sites1 == sites2
Exemplo n.º 9
0
def test_wire():
    np.random.seed(5)
    vecs = np.random.randn(3, 3)
    vecs[0] = [1, 0, 0]
    center = np.random.randn(3)
    lat = lattice.general(vecs, np.random.randn(4, 3))
    syst = builder.Builder(lattice.TranslationalSymmetry((2, 0, 0)))
    def wire_shape(pos):
        pos = np.array(pos)
        return np.linalg.norm(pos[1:] - center[1:])**2 <= 8.6**2
    syst[lat.shape(wire_shape, center)] = 0
    sites2 = set(syst.sites())
    syst = builder.Builder(lattice.TranslationalSymmetry((2, 0, 0)))
    syst[lat.wire(center, 8.6)] = 1
    sites1 = set(syst.sites())
    assert sites1 == sites2
Exemplo n.º 10
0
def test_translational_symmetry_reversed():
    np.random.seed(30)
    lat = lattice.general(np.identity(3))
    sites = [lat(i, j, k) for i in range(-2, 6) for j in range(-2, 6) for k in range(-2, 6)]
    for i in range(4):
        periods = np.random.randint(-5, 5, (3, 3))
        try:
            sym = lattice.TranslationalSymmetry(*periods)
            rsym = sym.reversed()
            for site in sites:
                assert_equal(sym.to_fd(site), rsym.to_fd(site))
                assert_equal(sym.which(site), -rsym.which(site))
                vec = np.array([1, 1, 1])
                assert_equal(sym.act(vec, site), rsym.act(-vec, site))
        except ValueError:
            pass
Exemplo n.º 11
0
def test_translational_symmetry_reversed():
    rng = ensure_rng(30)
    lat = lattice.general(np.identity(3), norbs=1)
    sites = [lat(i, j, k) for i in range(-2, 6) for j in range(-2, 6)
                          for k in range(-2, 6)]
    for i in range(4):
            periods = rng.randint(-5, 5, (3, 3))
            try:
                sym = lattice.TranslationalSymmetry(*periods)
                rsym = sym.reversed()
                for site in sites:
                    assert sym.to_fd(site) == rsym.to_fd(site)
                    assert sym.which(site) == -rsym.which(site)
                    vec = np.array([1, 1, 1])
                    assert sym.act(vec, site), rsym.act(-vec == site)
            except ValueError:
                pass
Exemplo n.º 12
0
def test_norbs():
    id_mat = np.identity(2)
    # Monatomic lattices
    # Catch deprecation warning
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        assert lattice.general(id_mat).norbs is None
    assert lattice.general(id_mat, norbs=2).norbs == 2
    # Polyatomic lattices
    # Catch deprecation warning
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        lat = lattice.general(id_mat, basis=id_mat, norbs=None)
    for l in lat.sublattices:
        assert l.norbs is None
    lat = lattice.general(id_mat, basis=id_mat, norbs=2)
    for l in lat.sublattices:
        assert l.norbs == 2
    lat = lattice.general(id_mat, basis=id_mat, norbs=[1, 2])
    for l, n in zip(lat.sublattices, [1, 2]):
        assert l.norbs == n
    # should raise ValueError for # of norbs different to length of `basis`
    raises(ValueError, lattice.general, id_mat, id_mat, norbs=[])
    raises(ValueError, lattice.general, id_mat, id_mat, norbs=[1, 2, 3])
    # TypeError if Monatomic lattice
    raises(TypeError, lattice.general, id_mat, norbs=[])
    # should raise ValueError if norbs not an integer
    raises(ValueError, lattice.general, id_mat, norbs=1.5)
    raises(ValueError, lattice.general, id_mat, id_mat, norbs=1.5)
    raises(ValueError, lattice.general, id_mat, id_mat, norbs=[1.5, 1.5])
    # should raise ValueError if norbs is <= 0
    raises(ValueError, lattice.general, id_mat, norbs=0)
    raises(ValueError, lattice.general, id_mat, norbs=-1)
    # test that lattices with different norbs are compared `not equal`
    # Catch deprecation warning
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        lat = lattice.general(id_mat, basis=id_mat, norbs=None)
    lat1 = lattice.general(id_mat, basis=id_mat, norbs=1)
    lat2 = lattice.general(id_mat, basis=id_mat, norbs=2)
    assert lat != lat1
    assert lat != lat2
    assert lat1 != lat2
Exemplo n.º 13
0
def model_to_builder(model, norbs, lat_vecs, atom_coords, *, coeffs=None):
    """Make a `~kwant.builder.Builder` out of qsymm.Models or qsymm.BlochModels.

    Parameters
    ----------
    model : qsymm.Model, qsymm.BlochModel, or an iterable thereof
        The Hamiltonian (or terms of the Hamiltonian) to convert to a
        Builder.
    norbs : OrderedDict or sequence of pairs
        Maps sites to the number of orbitals per site in a unit cell.
    lat_vecs : list of arrays
        Lattice vectors of the underlying tight binding lattice.
    atom_coords : list of arrays
        Positions of the sites (or atoms) within a unit cell.
        The ordering of the atoms is the same as in norbs.
    coeffs : list of sympy.Symbol, default None.
        Constant prefactors for the individual terms in model, if model
        is a list of multiple objects. If model is a single Model or BlochModel
        object, this argument is ignored. By default assigns the coefficient
        c_n to element model[n].

    Returns
    -------
    syst : `~kwant.builder.Builder`
        The unfinalized Kwant system representing the qsymm Model(s).

    Notes
    -----
    Onsite terms that are not provided in the input model are set
    to zero by default.

    The input model(s) representing the tight binding Hamiltonian in
    Bloch form should follow the convention where the difference in the real
    space atomic positions appear in the Bloch factors.
    """

    def make_int(R):
        # If close to an integer array convert to integer tinyarray, else
        # return None
        R_int = ta.array(np.round(R), int)
        if qsymm.linalg.allclose(R, R_int):
            return R_int
        else:
            return None

    def term_onsite(onsites_dict, hopping_dict, hop_mat, atoms,
                    sublattices, coords_dict):
        """Find the Kwant onsites and hoppings in a qsymm.BlochModel term
        that has no lattice translation in the Bloch factor.
        """
        for atom1, atom2 in it.product(atoms, atoms):
            # Subblock within the same sublattice is onsite
            hop = hop_mat[ranges[atom1], ranges[atom2]]
            if sublattices[atom1] == sublattices[atom2]:
                onsites_dict[atom1] += Model({coeff: hop}, momenta=momenta)
            # Blocks between sublattices are hoppings between sublattices
            # at the same position.
            # Only include nonzero hoppings
            elif not allclose(hop, 0):
                if not allclose(np.array(coords_dict[atom1]),
                                np.array(coords_dict[atom2])):
                    raise ValueError(
                        "Position of sites not compatible with qsymm model.")
                lat_basis = np.array(zer)
                hop = Model({coeff: hop}, momenta=momenta)
                hop_dir = builder.HoppingKind(-lat_basis, sublattices[atom1],
                                              sublattices[atom2])
                hopping_dict[hop_dir] += hop
        return onsites_dict, hopping_dict

    def term_hopping(hopping_dict, hop_mat, atoms,
                     sublattices, coords_dict):
        """Find Kwant hoppings in a qsymm.BlochModel term that has a lattice
        translation in the Bloch factor.
        """
        # Iterate over combinations of atoms, set hoppings between each
        for atom1, atom2 in it.product(atoms, atoms):
            # Take the block from atom1 to atom2
            hop = hop_mat[ranges[atom1], ranges[atom2]]
            # Only include nonzero hoppings
            if allclose(hop, 0):
                continue
            # Adjust hopping vector to Bloch form basis
            r_lattice = (
                r_vec
                + np.array(coords_dict[atom1])
                - np.array(coords_dict[atom2])
            )
            # Bring vector to basis of lattice vectors
            lat_basis = np.linalg.solve(np.vstack(lat_vecs).T, r_lattice)
            lat_basis = make_int(lat_basis)
            # Should only have hoppings that are integer multiples of
            # lattice vectors
            if lat_basis is not None:
                hop_dir = builder.HoppingKind(-lat_basis,
                                              sublattices[atom1],
                                              sublattices[atom2])
                # Set the hopping as the matrix times the hopping amplitude
                hopping_dict[hop_dir] += Model({coeff: hop}, momenta=momenta)
            else:
                raise RuntimeError('A nonzero hopping not matching a '
                                   'lattice vector was found.')
        return hopping_dict

    # Disambiguate single model instances from iterables thereof. Because
    # Model is itself iterable (subclasses dict) this is a bit cumbersome.
    if isinstance(model, Model):
        # BlochModel can't yet handle getting a Blochmodel as input
        if not isinstance(model, BlochModel):
            model = BlochModel(model)
    else:
        model = BlochModel(hamiltonian_from_family(
            model, coeffs=coeffs, nsimplify=False, tosympy=False))


    # 'momentum' and 'zer' are used in the closures defined above, so don't
    # move these declarations down.
    momenta = model.momenta
    if len(momenta) != len(lat_vecs):
        raise ValueError("Dimension of the lattice and number of "
                         "momenta do not match.")
    zer = [0] * len(momenta)


    # Subblocks of the Hamiltonian for different atoms.
    N = 0
    if not any([isinstance(norbs, OrderedDict), isinstance(norbs, list),
                isinstance(norbs, tuple)]):
        raise ValueError('norbs must be OrderedDict, tuple, or list.')
    else:
        norbs = OrderedDict(norbs)
    ranges = dict()
    for a, n in norbs.items():
        ranges[a] = slice(N, N + n)
        N += n

    # Extract atoms and number of orbitals per atom,
    # store the position of each atom
    atoms, orbs = zip(*norbs.items())
    coords_dict = dict(zip(atoms, atom_coords))

    # Make the kwant lattice
    lat = lattice.general(lat_vecs, atom_coords, norbs=orbs)
    # Store sublattices by name
    sublattices = dict(zip(atoms, lat.sublattices))

    # Keep track of the hoppings and onsites by storing those
    # which have already been set.
    hopping_dict = defaultdict(dict)
    onsites_dict = defaultdict(dict)

    # Iterate over all terms in the model.
    for key, hop_mat in model.items():
        # Determine whether this term is an onsite or a hopping, extract
        # overall symbolic coefficient if any, extract the exponential
        # part describing the hopping if present.
        r_vec, coeff = key
        # Onsite term; modifies onsites_dict and hopping_dict in-place
        if allclose(r_vec, 0):
            term_onsite(
                onsites_dict, hopping_dict, hop_mat,
                atoms, sublattices, coords_dict)
        # Hopping term; modifies hopping_dict in-place
        else:
            term_hopping(hopping_dict, hop_mat, atoms,
                         sublattices, coords_dict)

    # If some onsite terms are not set, we set them to zero.
    for atom in atoms:
        if atom not in onsites_dict:
            onsites_dict[atom] = Model(
                {sympy.numbers.One(): np.zeros((norbs[atom], norbs[atom]))},
                momenta=momenta)

    # Make the Kwant system, and set all onsites and hoppings.

    sym = lattice.TranslationalSymmetry(*lat_vecs)
    syst = builder.Builder(sym)

    # Iterate over all onsites and set them
    for atom, onsite in onsites_dict.items():
        syst[sublattices[atom](*zer)] = onsite.lambdify(onsite=True)

    # Finally, iterate over all the hoppings and set them
    for direction, hopping in hopping_dict.items():
        syst[direction] = hopping.lambdify(hopping=True)

    return syst
Exemplo n.º 14
0
def test_lattice_constraints(prim_vecs, basis):
    with pytest.raises(ValueError):
        lattice.general(prim_vecs, basis, norbs=1)
Exemplo n.º 15
0
def test_monatomic_lattice():
    lat = lattice.square(norbs=1)
    lat2 = lattice.general(np.identity(2), norbs=1)
    lat3 = lattice.square(name='no', norbs=1)
    assert len(set([lat, lat2, lat3, lat(0, 0), lat2(0, 0), lat3(0, 0)])) == 4
Exemplo n.º 16
0
def test_translational_symmetry():
    ts = lattice.TranslationalSymmetry
    f2 = lattice.general(np.identity(2), norbs=1)
    f3 = lattice.general(np.identity(3), norbs=1)
    shifted = lambda site, delta: site.family(*ta.add(site.tag, delta))

    raises(ValueError, ts, (0, 0, 4), (0, 5, 0), (0, 0, 2))
    sym = ts((3.3, 0))
    raises(ValueError, sym.add_site_family, f2)

    # Test lattices with dimension smaller than dimension of space.
    f2in3 = lattice.general([[4, 4, 0], [4, -4, 0]], norbs=1)
    sym = ts((8, 0, 0))
    sym.add_site_family(f2in3)
    sym = ts((8, 0, 1))
    raises(ValueError, sym.add_site_family, f2in3)

    # Test automatic fill-in of transverse vectors.
    sym = ts((1, 2))
    sym.add_site_family(f2)
    assert sym.site_family_data[f2][2] != 0
    sym = ts((1, 0, 2), (3, 0, 2))
    sym.add_site_family(f3)
    assert sym.site_family_data[f3][2] != 0

    transl_vecs = np.array([[10, 0], [7, 7]], dtype=int)
    sym = ts(*transl_vecs)
    assert sym.num_directions == 2
    sym2 = ts(*transl_vecs[:1, :])
    sym2.add_site_family(f2, transl_vecs[1:, :])
    for site in [f2(0, 0), f2(4, 0), f2(2, 1), f2(5, 5), f2(15, 6)]:
        assert sym.in_fd(site)
        assert sym2.in_fd(site)
        assert sym.which(site) == (0, 0)
        assert sym2.which(site) == (0, )
        for v in [(1, 0), (0, 1), (-1, 0), (0, -1), (5, 10), (-111, 573)]:
            site2 = shifted(site, np.dot(v, transl_vecs))
            assert not sym.in_fd(site2)
            assert (v[0] != 0) != sym2.in_fd(site2)
            assert sym.to_fd(site2) == site
            assert (v[1] == 0) == (sym2.to_fd(site2) == site)
            assert sym.which(site2) == v
            assert sym2.which(site2) == v[:1]

            for hop in [(0, 0), (100, 0), (0, 5), (-2134, 3213)]:
                assert (sym.to_fd(site2,
                                  shifted(site2,
                                          hop)) == (site, shifted(site, hop)))

    # Test act for hoppings belonging to different lattices.
    f2p = lattice.general(2 * np.identity(2), norbs=1)
    sym = ts(*(2 * np.identity(2)))
    assert sym.act((1, 1), f2(0, 0), f2p(0, 0)) == (f2(2, 2), f2p(1, 1))
    assert sym.act((1, 1), f2p(0, 0), f2(0, 0)) == (f2p(1, 1), f2(2, 2))

    # Test add_site_family on random lattices and symmetries by ensuring that
    # it's possible to add site groups that are compatible with a randomly
    # generated symmetry with proper vectors.
    rng = ensure_rng(30)
    vec = rng.randn(3, 5)
    lat = lattice.general(vec, norbs=1)
    total = 0
    for k in range(1, 4):
        for i in range(10):
            sym_vec = rng.randint(-10, 10, size=(k, 3))
            if np.linalg.matrix_rank(sym_vec) < k:
                continue
            total += 1
            sym_vec = np.dot(sym_vec, vec)
            sym = ts(*sym_vec)
            sym.add_site_family(lat)
    assert total > 20
Exemplo n.º 17
0
def test_translational_symmetry():
    ts = lattice.TranslationalSymmetry
    f2 = lattice.general(np.identity(2))
    f3 = lattice.general(np.identity(3))
    shifted = lambda site, delta: site.family(*ta.add(site.tag, delta))

    assert_raises(ValueError, ts, (0, 0, 4), (0, 5, 0), (0, 0, 2))
    sym = ts((3.3, 0))
    assert_raises(ValueError, sym.add_site_family, f2)

    # Test lattices with dimension smaller than dimension of space.
    f2in3 = lattice.general([[4, 4, 0], [4, -4, 0]])
    sym = ts((8, 0, 0))
    sym.add_site_family(f2in3)
    sym = ts((8, 0, 1))
    assert_raises(ValueError, sym.add_site_family, f2in3)

    # Test automatic fill-in of transverse vectors.
    sym = ts((1, 2))
    sym.add_site_family(f2)
    assert_not_equal(sym.site_family_data[f2][2], 0)
    sym = ts((1, 0, 2), (3, 0, 2))
    sym.add_site_family(f3)
    assert_not_equal(sym.site_family_data[f3][2], 0)

    transl_vecs = np.array([[10, 0], [7, 7]], dtype=int)
    sym = ts(*transl_vecs)
    assert_equal(sym.num_directions, 2)
    sym2 = ts(*transl_vecs[:1, :])
    sym2.add_site_family(f2, transl_vecs[1:, :])
    for site in [f2(0, 0), f2(4, 0), f2(2, 1), f2(5, 5), f2(15, 6)]:
        assert sym.in_fd(site)
        assert sym2.in_fd(site)
        assert_equal(sym.which(site), (0, 0))
        assert_equal(sym2.which(site), (0,))
        for v in [(1, 0), (0, 1), (-1, 0), (0, -1), (5, 10), (-111, 573)]:
            site2 = shifted(site, np.dot(v, transl_vecs))
            assert not sym.in_fd(site2)
            assert (v[0] != 0) != sym2.in_fd(site2)
            assert_equal(sym.to_fd(site2), site)
            assert (v[1] == 0) == (sym2.to_fd(site2) == site)
            assert_equal(sym.which(site2), v)
            assert_equal(sym2.which(site2), v[:1])

            for hop in [(0, 0), (100, 0), (0, 5), (-2134, 3213)]:
                assert_equal(sym.to_fd(site2, shifted(site2, hop)), (site, shifted(site, hop)))

    # Test act for hoppings belonging to different lattices.
    f2p = lattice.general(2 * np.identity(2))
    sym = ts(*(2 * np.identity(2)))
    assert sym.act((1, 1), f2(0, 0), f2p(0, 0)) == (f2(2, 2), f2p(1, 1))
    assert sym.act((1, 1), f2p(0, 0), f2(0, 0)) == (f2p(1, 1), f2(2, 2))

    # Test add_site_family on random lattices and symmetries by ensuring that
    # it's possible to add site groups that are compatible with a randomly
    # generated symmetry with proper vectors.
    np.random.seed(30)
    vec = np.random.randn(3, 5)
    lat = lattice.general(vec)
    total = 0
    for k in range(1, 4):
        for i in range(10):
            sym_vec = np.random.randint(-10, 10, size=(k, 3))
            if np.linalg.matrix_rank(sym_vec) < k:
                continue
            total += 1
            sym_vec = np.dot(sym_vec, vec)
            sym = ts(*sym_vec)
            sym.add_site_family(lat)
    assert total > 20
Exemplo n.º 18
0
def test_monatomic_lattice():
    lat = lattice.square()
    lat2 = lattice.general(np.identity(2))
    lat3 = lattice.square(name="no")
    assert len(set([lat, lat2, lat3, lat(0, 0), lat2(0, 0), lat3(0, 0)])) == 4