Exemplo n.º 1
0
def test_spikecache_1():
    nspikes = 100000
    nclusters = 100
    nchannels = 8
    spike_clusters = np.random.randint(size=nspikes, low=0, high=nclusters)
    
    sc = SpikeCache(spike_clusters=spike_clusters,
                    cache_fraction=.1,
                    features_masks=np.zeros((nspikes, 3*nchannels, 2)),
                    waveforms_raw=np.zeros((nspikes, 20, nchannels)),
                    waveforms_filtered=np.zeros((nspikes, 20, nchannels)))
                    
    ind, fm = sc.load_features_masks(.1)
    
    assert len(ind) == nspikes // 100
    assert fm.shape[0] == nspikes // 100
    
    ind, fm = sc.load_features_masks(clusters=[10, 20])
    
    assert len(ind) == fm.shape[0]
    assert np.allclose(ind, np.nonzero(np.in1d(spike_clusters, (10, 20)))[0])
    
    ind, fm = sc.load_features_masks(clusters=[1000])
    assert len(ind) == 0
    assert len(fm) == 0
Exemplo n.º 2
0
 def init_cache(self):
     """Initialize the cache for the features & masks."""
     self._spikecache = SpikeCache(
         # TODO: handle multiple clusterings in the spike cache here
         spike_clusters=self.clusters.main,
         features_masks=self.features_masks,
         waveforms_raw=self.waveforms_raw,
         waveforms_filtered=self.waveforms_filtered,
         # TODO: put this value in the parameters
         cache_fraction=1.,)
Exemplo n.º 3
0
def test_spikecache_2():
    nspikes = 100000
    nclusters = 100
    nchannels = 8
    spike_clusters = np.random.randint(size=nspikes, low=0, high=nclusters)
    
    sc = SpikeCache(spike_clusters=spike_clusters,
                    cache_fraction=.1,
                    features_masks=np.zeros((nspikes, 3*nchannels, 2)),
                    waveforms_raw=np.zeros((nspikes, 20, nchannels)),
                    waveforms_filtered=np.zeros((nspikes, 20, nchannels)))
           
    ind, waveforms = sc.load_waveforms(clusters=[10], count=10)
    assert len(ind) == waveforms.shape[0]
    assert len(ind) >= 10
    
    ind, waveforms = sc.load_waveforms(clusters=[10, 20], count=10)
    assert len(ind) == waveforms.shape[0]
    assert len(ind) >= 20
    
    ind, waveforms = sc.load_waveforms(clusters=[1000], count=10)
    assert len(ind) == 0