Exemplo n.º 1
0
def test_basic_arithmetic():
    m1 = TensorProductMean(f1)
    m2 = TensorProductMean(f2)
    m3 = ZeroMean()

    x1 = B.randn(10, 2)
    x2 = B.randn()

    approx((m1 * m2)(x1), m1(x1) * m2(x1))
    approx((m1 * m2)(x2), m1(x2) * m2(x2))
    approx((m1 + m3)(x1), m1(x1) + m3(x1))
    approx((m1 + m3)(x2), m1(x2) + m3(x2))
    approx((5.0 * m1)(x1), 5.0 * m1(x1))
    approx((5.0 * m1)(x2), 5.0 * m1(x2))
    approx((5.0 + m1)(x1), 5.0 + m1(x1))
    approx((5.0 + m1)(x2), 5.0 + m1(x2))
Exemplo n.º 2
0
def test_derivative():
    m = TensorProductMean(lambda x: x**2)
    m2 = TensorProductMean(lambda x: x**3)
    x = B.randn(tf.float64, 10, 1)

    allclose(m.diff(0)(x), 2 * x)
    allclose(m2.diff(0)(x), 3 * x**2)
Exemplo n.º 3
0
def test_posterior_mean():
    z = B.linspace(0, 1, 10)
    pcm = PosteriorMean(
        TensorProductMean(lambda x: x),
        TensorProductMean(lambda x: x ** 2),
        EQ(),
        z,
        2 * EQ()(z),
        B.randn(10),
    )

    # Check name.
    assert str(pcm) == "PosteriorMean()"

    # Check that the mean computes.
    pcm(z)
Exemplo n.º 4
0
def test_tensor_product():
    m1 = 5 * OneMean() + (lambda x: x ** 2)
    m2 = (lambda x: x ** 2) + 5 * OneMean()
    m3 = (lambda x: x ** 2) + ZeroMean()
    m4 = ZeroMean() + (lambda x: x ** 2)

    x = B.randn(10, 1)
    assert np.allclose(m1(x), 5 + x ** 2)
    assert np.allclose(m2(x), 5 + x ** 2)
    assert np.allclose(m3(x), x ** 2)
    assert np.allclose(m4(x), x ** 2)

    def my_function(x):
        pass

    assert str(TensorProductMean(my_function)) == "my_function"
Exemplo n.º 5
0
def test_input_transform():
    m = 5 * OneMean() + (lambda x: x ** 2)
    x = B.randn(10, 3)
    approx(m.transform(lambda x: x - 5)(x), m(x - 5))
Exemplo n.º 6
0
def test_stretching():
    m = 5 * OneMean() + (lambda x: x ** 2)
    x = B.randn(10, 3)
    approx(m.stretch(5)(x), m(x / 5))
Exemplo n.º 7
0
def test_shifting():
    m = 5 * OneMean() + (lambda x: x ** 2)
    x = B.randn(10, 3)
    approx(m.shift(5)(x), m(x - 5))
Exemplo n.º 8
0
def test_selected_mean():
    m = 5 * OneMean() + (lambda x: x ** 2)
    x = B.randn(10, 3)
    approx(m.select([1, 2])(x), m(x[:, [1, 2]]))
Exemplo n.º 9
0
@_dispatch(Number)
def f2(x):
    return np.array([[x ** 3]])


@_dispatch(object)
def f2(x):
    return B.sum(x ** 3, axis=1)[:, None]


def test_corner_cases():
    with pytest.raises(RuntimeError):
        Mean()(1.0)


@pytest.mark.parametrize("x", [B.randn(10), Input(B.randn(10)), FDD(None, B.randn(10))])
def test_construction(x):
    m = TensorProductMean(lambda y: y ** 2)
    m(x)

    # Test `MultiInput` construction.
    approx(m(MultiInput(x, x)), B.concat(m(x), m(x), axis=0))


def test_basic_arithmetic():
    m1 = TensorProductMean(f1)
    m2 = TensorProductMean(f2)
    m3 = ZeroMean()

    x1 = B.randn(10, 2)
    x2 = B.randn()