def norm2( x ): """ Compute the 2-norm of a vector, returning alpha x can be a row or column vector. """ assert type(x) is np.matrix and len(x.shape) is 2, \ "laff.norm2: vector x must be a 2D numpy.matrix" m, n = np.shape(x) assert m is 1 or n is 1, \ "laff.norm2: x is not a vector" #Ensure that we don't modify x in #any way by copying it to a new vector, y y = np.matrix( np.zeros( (m,n) ) ) laff.copy( x, y ) #Initialize variables that we will use to appropriate values alpha = 0 maxval = y[ 0, 0 ] if m is 1: #y is a row #Find a value to scale by to avoid under/overflow for i in range(n): if abs(y[ 0, i ]) > maxval: maxval = abs(y[ 0, i ]) elif n is 1: #y is a column #Find a value to scale by to avoid under/overflow for i in range(m): if abs(y[ i, 0 ]) > maxval: maxval = abs(y[ i, 0 ]) #If y is the zero vector, return 0 if abs(maxval) < 1e-7: return 0 #Scale all of the values by 1/maxval to prevent under/overflow laff.scal( 1.0/maxval, y ) alpha = maxval * sqrt( laff.dot( y, y ) ) return alpha
def norm2( x ): """ Compute the 2-norm of a vector, returning alpha x can be a row or column vector. """ assert type(x) is np.matrix and len(x.shape) is 2, \ "laff.norm2: vector x must be a 2D numpy.matrix" m, n = np.shape(x) assert m is 1 or n is 1, \ "laff.norm2: x is not a vector" #Ensure that we don't modify x in #any way by copying it to a new vector, y y = np.matrix( np.zeros( (m,n) ) ) laff.copy( x, y ) #Initialize variables that we will use to appropriate values alpha = 0 maxval = y[ 0, 0 ] if m is 1: #y is a row #Find a value to scale by to avoid under/overflow for i in range(n): if abs(y[ 0, i ]) > maxval: maxval = y[ 0, i ] elif n is 1: #y is a column #Find a value to scale by to avoid under/overflow for i in range(m): if abs(y[ i, 0 ]) > maxval: maxval = y[ i, 0 ] #If y is the zero vector, return 0 if maxval is 0: return 0 #Scale all of the values by 1/maxval to prevent under/overflow laff.scal( 1.0/maxval, y ) alpha = maxval * sqrt( laff.dot( y, y ) ) return alpha
def norm2(x): """ """ assert type(x) is np.matrix and len( x.shape) is 2, "laff.norm2: vector x must be a 2D numpy.matrix" m, n = np.shape(x) assert m is 1 or n is 1, "laff.norm2: x is not a vector" y = np.matrix(np.zeros((m, n))) laff.copy(x, y) alpha = 0 maxval = y[0, 0] if m is 1: #y is a row for i in range(n): if abs(y[0, i]) > maxval: maxval = abs(y[0, i]) elif n is 1: #y is a column for i in range(m): if abs(y[i, 0]) > maxval: maxval = abs(y[i, 0]) if abs(maxval) < 1e-7: return 0 laff.scal(1.0 / maxval, y) alpha = maxval * sqrt(laff.dot(y, y)) return alpha
def norm2( x ): """ """ assert type(x) is np.matrix and len(x.shape) is 2, "laff.norm2: vector x must be a 2D numpy.matrix" m, n = np.shape(x) assert m is 1 or n is 1, "laff.norm2: x is not a vector" y = np.matrix( np.zeros( (m,n) ) ) laff.copy( x, y ) alpha = 0 maxval = y[ 0, 0 ] if m is 1: #y is a row for i in range(n): if abs(y[ 0, i ]) > maxval: maxval = abs(y[ 0, i ]) elif n is 1: #y is a column for i in range(m): if abs(y[ i, 0 ]) > maxval: maxval = abs(y[ i, 0 ]) if abs(maxval) < 1e-7: return 0 laff.scal( 1.0/maxval, y ) alpha = maxval * sqrt( laff.dot( y, y ) ) return alpha