Exemplo n.º 1
0
def channel_performance( vchans, ranges, performances, num_gchs, num_clns, figax=None, cmap=None):
    
    if figax == None:
        figrank = plt.figure(figsize=chan_perf_figsize)
        axrank = figrank.add_axes(chan_perf_axpos)

        figeff = plt.figure(figsize=chan_perf_figsize)
        axeff = figeff.add_axes(chan_perf_axpos)

        figfap = plt.figure(figsize=chan_perf_figsize)
        axfap = figfap.add_axes(chan_perf_axpos)
    else:
        (figrank, axrank), (figeff, axeff), (figfap, axfap) = figax

    if cmap==None:
        cmap = matplotlib.cm.get_cmap()

    S = int(np.max(ranges))
    ind = 0
    for ind, vchan in enumerate(vchans):
        for (s, e), performance, num_gch, num_cln in zip(ranges, performances, num_gchs, num_clns):
            if performance.has_key(vchan):
                gch = performance[vchan]['gch']
                cln = performance[vchan]['cln']

                if num_gch:
                    eff = 1.0*gch/num_gch
                else:
                    eff = 0

                if num_cln:
                    fap = 1.0*cln/num_cln
                else:
                    fap = 0

                if fap > 0:
                    rank = ovl.effbydt_to_rank( eff/fap )
                elif eff > 0:
                    rank = 1
                else:
                    rank = 0
                
                axrank.fill_between( [s-S, e-S], [ind-0.5]*2, [ind+0.5]*2, color=cmap(rank) )
                axeff.fill_between( [s-S, e-S], [ind-0.5]*2, [ind+0.5]*2, color=cmap(eff) )
                axfap.fill_between( [s-S, e-S], [ind-0.5]*2, [ind+0.5]*2, color=cmap(fap) )

    ticks = range(ind+1)
    for ax in [axrank, axeff, axfap]:
        ax.yaxis.set_ticks( ticks )
        ax.yaxis.set_ticklabels( [vchan.replace("_","\_") for vchan in vchans] )
       
        ax.set_xlabel('sec relative to %d'%S)
       
        ax.set_ylim(ymin=-0.5, ymax=ind+0.5)
 
    return (figrank, axrank), (figeff, axeff), (figfap, axfap)
Exemplo n.º 2
0
def extract_ovl_vconfigs(rank_frames,
                         channame,
                         traindir,
                         start,
                         end,
                         metric='eff/dt'):
    """
    returns a dictionary mapping active vconfigs to segments
    does NOT include "none" channel
    """
    vconfigs = []
    for rnkfr in rank_frames:
        trained, calib = idq.extract_timeseries_ranges(rnkfr)
        classifier = idq.extract_fap_name(rnkfr)

        vetolist = glob.glob("%s/%d_%d/ovl/ovl/*vetolist.eval" %
                             (traindir, trained[0], trained[1]))
        if len(vetolist) != 1:
            raise ValueError(
                "trouble finding a single vetolist file for : %s" % rnkfr)
        vetolist = vetolist[0]
        v = event.loadstringtable(vetolist)

        rankmap = {0: [(None, None, None, None, 0, 0)]}

        for line in v:
            metric_exp = float(line[ovl.vD['metric_exp']])
            if metric == 'eff/dt':
                rnk = ovl.effbydt_to_rank(metric_exp)
            elif metric == 'vsig':
                rnk = ovl.vsig_to_rank(metric_exp)
            elif metric == 'useP':
                rnk = ovl.useP_to_rank(metric_exp)
            else:
                raise ValueError("metric=%s not understood" % metric)
            if rankmap.has_key(rnk):
                rankmap[rnk].append(
                    (line[ovl.vD['vchan']], float(line[ovl.vD['vthr']]),
                     float(line[ovl.vD['vwin']]), metric, metric_exp, rnk))
            else:
                rankmap[rnk] = [
                    (line[ovl.vD['vchan']], float(line[ovl.vD['vthr']]),
                     float(line[ovl.vD['vwin']]), metric, metric_exp, rnk)
                ]

        for key, value in rankmap.items():
            rankmap[key] = tuple(value)

        t, ts = idq.combine_gwf([rnkfr], [channame])
        t = t[0]
        truth = (start <= t) * (t <= end)
        t = t[truth]
        ts = ts[0][truth]
        if not len(ts):
            continue

        configs = rankmap[ts[0]]
        segStart = t[0]
        for T, TS in zip(t, ts):
            if rankmap[TS] != configs:
                vconfigs.append((configs, [segStart, T]))
                segStart = T
                configs = rankmap[TS]
            else:
                pass
        vconfigs.append((configs, [segStart, T + t[1] - t[0]]))

    configs = {}
    for vconfig, seg in vconfigs:
        if configs.has_key(vconfig):
            configs[vconfig].append(seg)
        else:
            configs[vconfig] = [seg]
    for key, value in configs.items():
        value = event.andsegments([event.fixsegments(value), [[start, end]]])
        if event.livetime(value):
            configs[key] = event.fixsegments(value)
        else:
            raise ValueError(
                "somehow picked up a config with zero livetime...")

    return vconfigs, configs, {
        "vchan": 0,
        "vthr": 1,
        "vwin": 2,
        "metric": 3,
        "metric_exp": 4,
        "rank": 5
    }
Exemplo n.º 3
0
def extract_ovl_vconfigs( rank_frames, channame, traindir, start, end, metric='eff/dt' ):
    """
    returns a dictionary mapping active vconfigs to segments
    does NOT include "none" channel
    """
    vconfigs = []
    for rnkfr in rank_frames:
        trained, calib = idq.extract_timeseries_ranges( rnkfr )
        classifier = idq.extract_fap_name( rnkfr ) 

        vetolist = glob.glob( "%s/%d_%d/ovl/ovl/*vetolist.eval"%(traindir, trained[0], trained[1]) )        
        if len(vetolist) != 1:
            raise ValueError( "trouble finding a single vetolist file for : %s"%rnkfr )
        vetolist=vetolist[0]
        v = event.loadstringtable( vetolist )

        rankmap = { 0:[(None, None, None, None, 0, 0)] }

        for line in v:
            metric_exp = float(line[ovl.vD['metric_exp']])
            if metric == 'eff/dt':
                rnk = ovl.effbydt_to_rank( metric_exp )
            elif metric == 'vsig':
                rnk = ovl.vsig_to_rank( metric_exp )
            elif metric == 'useP': 
                rnk = ovl.useP_to_rank( metric_exp )
            else:
                raise ValueError("metric=%s not understood"%metric)
            if rankmap.has_key(rnk):
                rankmap[rnk].append( (line[ovl.vD['vchan']], float(line[ovl.vD['vthr']]), float(line[ovl.vD['vwin']]), metric, metric_exp, rnk ))
            else:
                rankmap[rnk] = [(line[ovl.vD['vchan']], float(line[ovl.vD['vthr']]), float(line[ovl.vD['vwin']]), metric, metric_exp, rnk )]

        for key, value in rankmap.items():
            rankmap[key] = tuple(value)

        t, ts = idq.combine_gwf( [rnkfr], [channame])
        t = t[0]
        truth = (start <= t)*(t <= end)
        t = t[truth]
        ts = ts[0][truth]
        if not len(ts):
            continue

        configs = rankmap[ts[0]]
        segStart = t[0]
        for T, TS in zip(t, ts):
            if rankmap[TS] != configs:
                vconfigs.append( (configs, [segStart, T] ) )
                segStart = T
                configs = rankmap[TS]
            else:
                pass 
        vconfigs.append( (configs, [segStart, T+t[1]-t[0]] ) )

    configs = {}
    for vconfig, seg in vconfigs:
        if configs.has_key( vconfig ):
            configs[vconfig].append( seg )
        else:
            configs[vconfig] = [ seg ]
    for key, value in configs.items():
        value = event.andsegments( [event.fixsegments( value ), [[start,end]] ] )
        if event.livetime( value ):
            configs[key] = event.fixsegments( value )
        else:
            raise ValueError("somehow picked up a config with zero livetime...")

    return vconfigs, configs, {"vchan":0, "vthr":1, "vwin":2, "metric":3, "metric_exp":4, "rank":5}
Exemplo n.º 4
0
def chanlist_trending(
    gps_start,
    gps_stop,
    glob_dir,
    classifier='ovl',
    figure_name=False,
    verbose=False,
    annotated=True,
    yvalue="rank"
    ):
    """
  builds a channel performance trending plot using chanlist files
  """

    if yvalue not in ["rank", "eff", "fap"]:
        raise ValueError, "yvalue=%s not understood"%yvalue

    ax_bounds = [0.025, 0.075, 0.5, 0.775]
    ax_cb_bounds = [0.025, 0.875, 0.5, 0.05]

  # figure out appropriat time variable:

    dur = gps_stop - gps_start
    for (tau, tau_name) in [(1., 'seconds'), (60., 'minutes'), (3600.,
                            'hours'), (86400., 'days'), (7 * 86400.,
                            'weeks')]:
        if dur / tau < 100:
            break

  # ## find only the channel lists within this range

    if verbose:
        print 'finding %s*channel_summary.txt files within [%f, %f]' \
            % (classifier, gps_start, gps_stop)
    chanlists = []
    for _dir in sorted(glob.glob(glob_dir + '/*_*')):
        try:
            (_start, _stop) = [int(l) for l in _dir.split('/'
                               )[-1].split('_')]
            if gps_start <= _start and gps_stop > _start or gps_start \
                < _stop and gps_stop >= _stop:
                chanlists.append(glob.glob(_dir + '/' + classifier
                                 + '*_channel_summary.txt')[0])  # expect only one channel_summary.txt per _dir per classifier
        except:
            pass

    ### read in data from chanlists and build dictionary
    chans = {}
    for chanlist in chanlists:
        if verbose:
            print 'reading data from %s' % chanlist

    # get time range for this chan list

        (_start, _dur) = [int(l) for l in chanlist.split('/'
                          )[-1].split('_')[0].split('-')[-2:]]  # eg: ovl-1043366400-86400_channel_summary.txt

    # read in this chanlist

        c = [[line[0]] + [float(l) for l in line[1:]] for line in
             [_line.strip().split() for _line in open(chanlist, 'r'
             ).readlines()[1:]]]

        for chan_dat in c:
            channel = chan_dat[chanlistD['channel']]

            if yvalue == "rank":
                yValue = ovl.effbydt_to_rank(chan_dat[chanlistD['eff/fap']])
            elif yvalue == "eff":
                yValue = chan_dat[chanlistD['c_eff']]
            elif yvalue == "fap":
                yValue = chan_dat[chanlistD['c_fap']]
            else:
                raise ValueError, "yvalue=%s not understood"%yvalue

            if chans.has_key(channel):
                chans[channel].append([_start, _start + _dur, yValue])
            else:
                chans[channel] = [[_start, _start + _dur, yValue]]

  # ## build plot

    if verbose:
        print 'generating figure'
    color_map = matplotlib.cm.get_cmap()
    norm = mpl.colors.Normalize(vmin=0, vmax=1)
    fig = plt.figure()
    ax = fig.add_axes(ax_bounds)

    yticklabels = []
    time_min = 0
    ind = 0
    for (ind, channel) in enumerate([chan for chan in
                                    sorted(chans.keys()) if chan
                                    != 'none']):  # we don't care about the "none" channel
        yticklabels.append(channel.replace("_","\_"))
        for (_start, _stop, yValue) in chans[channel]:
            if _start - gps_stop < time_min:
                time_min = _start - gps_stop

            ax.fill_between([(_start - gps_stop) / tau, (_stop
                            - gps_stop) / tau], [ind + 0.49, ind
                            + 0.49], [ind - 0.49, ind - 0.49],
                            facecolor=color_map(yValue), edgecolor='none')

            if annotated:
                ax.text(((_start + _stop) / 2. - gps_stop) / tau, ind,
                        '%.2f' % rank, ha='center', va='center')

    ax.set_xlim(xmin=time_min / tau, xmax=0)
    ax.set_ylim(ymin=-0.5, ymax=ind + 0.5)

    ax.set_xlabel('%s relative to gps=%.0f' % (tau_name, gps_stop))
    ax.set_yticks(range(ind + 1))
    ax.set_yticklabels(yticklabels)
    ax.yaxis.tick_right()

#  plt.setp(plt.getp(ax, 'yticklabels'), fontsize=7.5)
#  plt.setp(plt.getp(ax, 'xticklabels'), fontsize=10)

    ax_colorbar = fig.add_axes(ax_cb_bounds)
    cb = mpl.colorbar.ColorbarBase(ax_colorbar, cmap=color_map,
                                   norm=norm, orientation='horizontal')

    if yvalue == "rank":
        cb.set_label(classifier + ' rank')
    elif yvalue == "eff":
        cb.set_label(classifier + ' efficiency')
    elif yvalue == "fap":
        cb.set_label(classifier + ' false alarm probability')
    else:
        raise ValueError, "yvalue=%s not understood"%yvalue

    ax_colorbar.xaxis.tick_top()
    ax_colorbar.xaxis.set_label_position('top')

    plt.setp(fig, figheight=max(2.54, 1.0 + 0.15 * (ind + 1)), figwidth=10)
    ax.grid(True)

    if figure_name:
        if verbose:
            print 'saving figure into %s' % figure_name
        plt.savefig(figure_name)
        return figure_name
    else:
        return fig