Exemplo n.º 1
0
 def test_missing_boston(self):
     # regression, categoricals+numbers, synthetically added missing values
     all_X, all_y = sklearn.datasets.load_boston(return_X_y=True)
     with_missing_X = lale.helpers.add_missing_values(all_X)
     with self.assertRaisesRegex(ValueError, "Input contains NaN"):
         lr_trainable = LinearRegression()
         _ = lr_trainable.fit(with_missing_X, all_y)
     self._fit_predict("regression", with_missing_X, all_y)
Exemplo n.º 2
0
 def test_scorers_regression(self):
     fairness_info = self.boston["fairness_info"]
     trainable = LinearRegression()
     train_X = self.boston["train_X"]
     train_y = self.boston["train_y"]
     trained = trainable.fit(train_X, train_y)
     test_X = self.boston["test_X"]
     test_y = self.boston["test_y"]
     self._attempt_scorers(fairness_info, trained, test_X, test_y)
Exemplo n.º 3
0
    def test_hyperparam_estimator(self):
        lr = LogisticRegression()
        linear_reg = LinearRegression()
        ada = AdaBoostRegressor(base_estimator=lr)

        replaced_ada = ada.replace(lr, linear_reg)
        expected_ada = AdaBoostRegressor(base_estimator=linear_reg)
        self.assertEqual(replaced_ada.to_json(), expected_ada.to_json())

        replaced_ada = ada.replace(LogisticRegression, linear_reg)
        expected_ada = AdaBoostRegressor(base_estimator=linear_reg)
        self.assertEqual(replaced_ada.to_json(), expected_ada.to_json())

        ada_pipeline = PCA >> SimpleImputer >> ada
        replaced_pipeline = ada_pipeline.replace(lr, linear_reg)
        expected_pipeline = (
            PCA >> SimpleImputer >> AdaBoostRegressor(base_estimator=linear_reg)
        )
        self.assertEqual(replaced_pipeline.to_json(), expected_pipeline.to_json())

        ada_choice = PCA | ada
        replaced_choice = ada_choice.replace(lr, linear_reg)
        expected_choice = PCA | AdaBoostRegressor(base_estimator=linear_reg)
        self.assertEqual(replaced_choice.to_json(), expected_choice.to_json())

        rfe = RFE(estimator=lr)
        replaced_rfe = rfe.replace(lr, linear_reg)
        expected_rfe = RFE(estimator=linear_reg)
        self.assertEqual(replaced_rfe.to_json(), expected_rfe.to_json())
Exemplo n.º 4
0
    def test_hyperparam_estimator_list(self):
        lr = LogisticRegression()
        linear_reg = LinearRegression()
        dtc = DecisionTreeClassifier()

        cls_list = [("lr", lr), ("linear_reg", linear_reg)]
        vc = VotingClassifier(estimators=cls_list)

        replaced_vc = vc.replace(linear_reg, dtc)
        new_cls_list = [("lr", lr), ("linear_reg", dtc)]
        expected_vc = VotingClassifier(estimators=new_cls_list)
        self.assertEqual(replaced_vc.to_json(), expected_vc.to_json())

        sc = StackingClassifier(estimators=cls_list, final_estimator=vc)
        replaced_sc = sc.replace(linear_reg, dtc)
        new_cls_list = [("lr", lr), ("linear_reg", dtc)]
        expected_sc = StackingClassifier(
            estimators=new_cls_list, final_estimator=expected_vc
        )
        self.assertEqual(replaced_sc.to_json(), expected_sc.to_json())
Exemplo n.º 5
0
 def test_with_defaults(self):
     trainable = LinearRegression()
     trained = trainable.fit(self.train_X, self.train_y)
     _ = trained.predict(self.test_X)