Exemplo n.º 1
0
 def test_first_call(self):
     trainable_pipeline = StandardScaler()
     trained_pipeline = trainable_pipeline.fit(self.X_train, self.y_train)
     new_pipeline = trained_pipeline.freeze_trained() >> SGDClassifier()
     new_trained_pipeline = new_pipeline.partial_fit(self.X_train,
                                                     self.y_train,
                                                     classes=[0, 1, 2])
     _ = new_trained_pipeline.predict(self.X_test)
Exemplo n.º 2
0
    def test_batching_with_hyperopt(self):
        from lale.lib.lale import Batching, Hyperopt
        from lale.lib.sklearn import MinMaxScaler, SGDClassifier

        pipeline = Batching(operator=MinMaxScaler() >> SGDClassifier())
        trained = pipeline.auto_configure(
            self.X_train, self.y_train, optimizer=Hyperopt, max_evals=1
        )
        _ = trained.predict(self.X_test)
Exemplo n.º 3
0
    def test_batching_with_hyperopt(self):
        from lale.lib.sklearn import MinMaxScaler, SGDClassifier
        from lale.lib.lale import Hyperopt, Batching
        from sklearn.metrics import accuracy_score

        pipeline = Batching(operator=MinMaxScaler() >> SGDClassifier())
        trained = pipeline.auto_configure(self.X_train,
                                          self.y_train,
                                          optimizer=Hyperopt,
                                          max_evals=1)
        predictions = trained.predict(self.X_test)
Exemplo n.º 4
0
 def test_call_on_trainable(self):
     trainable_pipeline = StandardScaler()
     trained_pipeline = trainable_pipeline.fit(self.X_train, self.y_train)
     new_pipeline = trained_pipeline.freeze_trained() >> SGDClassifier()
     new_pipeline.partial_fit(self.X_train, self.y_train, classes=[0, 1, 2])
     new_pipeline.pretty_print()
     new_trained_pipeline = new_pipeline.partial_fit(self.X_test,
                                                     self.y_test,
                                                     classes=[0, 1, 2])
     self.assertEqual(new_trained_pipeline, new_pipeline._trained)
     _ = new_trained_pipeline.predict(self.X_test)
     new_pipeline.partial_fit(self.X_train, self.y_train, classes=[0, 1, 2])
Exemplo n.º 5
0
 def test_second_call_with_different_classes_trainable(self):
     trainable_pipeline = StandardScaler()
     trained_pipeline = trainable_pipeline.fit(self.X_train, self.y_train)
     new_pipeline = trained_pipeline.freeze_trained() >> SGDClassifier()
     new_pipeline.partial_fit(self.X_train, self.y_train, classes=[0, 1, 2])
     # Once SGDClassifier is trained, it has a classes_ attribute.
     self.assertTrue(self._last_impl_has(new_pipeline._trained, "classes_"))
     subset_labels = self.y_test[np.where(self.y_test != 0)]
     subset_X = self.X_test[0:len(subset_labels)]
     new_trained_pipeline = new_pipeline.partial_fit(
         subset_X, subset_labels)
     _ = new_trained_pipeline.predict(self.X_test)
Exemplo n.º 6
0
 def test_second_call_without_classes(self):
     trainable_pipeline = StandardScaler()
     trained_pipeline = trainable_pipeline.fit(self.X_train, self.y_train)
     new_pipeline = trained_pipeline.freeze_trained() >> SGDClassifier()
     new_trained_pipeline = new_pipeline.partial_fit(self.X_train,
                                                     self.y_train,
                                                     classes=[0, 1, 2])
     # Once SGDClassifier is trained, it has a classes_ attribute.
     self.assertTrue(self._last_impl_has(new_trained_pipeline, "classes_"))
     new_trained_pipeline = new_trained_pipeline.partial_fit(
         self.X_test, self.y_test)
     _ = new_trained_pipeline.predict(self.X_test)
Exemplo n.º 7
0
    def test_sgd_classifier_3(self):
        from lale.lib.sklearn import SGDClassifier

        reg = SGDClassifier(l1_ratio=0.2, penalty='l1')
        reg.fit(self.X_train, self.y_train)
Exemplo n.º 8
0
    def test_sgd_classifier_2(self):
        from lale.lib.sklearn import SGDClassifier

        reg = SGDClassifier(early_stopping=False, validation_fraction=0.2)
        reg.fit(self.X_train, self.y_train)
Exemplo n.º 9
0
    def test_sgd_classifier_1(self):
        from lale.lib.sklearn import SGDClassifier

        reg = SGDClassifier(learning_rate='optimal', eta0=0.2)
        reg.fit(self.X_train, self.y_train)
Exemplo n.º 10
0
    def test_sgd_classifier(self):
        from lale.lib.sklearn import SGDClassifier

        reg = SGDClassifier(loss='squared_loss', epsilon=0.2)
        reg.fit(self.X_train, self.y_train)
Exemplo n.º 11
0
 def test_sgd_classifier_3(self):
     reg = SGDClassifier(l1_ratio=0.2, penalty="l1")
     reg.fit(self.X_train, self.y_train)
Exemplo n.º 12
0
 def test_sgd_classifier_2(self):
     reg = SGDClassifier(early_stopping=False, validation_fraction=0.2)
     reg.fit(self.X_train, self.y_train)
Exemplo n.º 13
0
 def test_sgd_classifier_1(self):
     reg = SGDClassifier(learning_rate="optimal", eta0=0.2)
     reg.fit(self.X_train, self.y_train)
Exemplo n.º 14
0
 def test_sgd_classifier(self):
     reg = SGDClassifier(loss="squared_loss", epsilon=0.2)
     reg.fit(self.X_train, self.y_train)
Exemplo n.º 15
0
 def test_export_to_sklearn_pipeline5(self):
     lale_pipeline = PCA() >> (XGBClassifier() | SGDClassifier())
     with self.assertRaises(ValueError):
         _ = lale_pipeline.export_to_sklearn_pipeline()