Exemplo n.º 1
0
 def test_sgd_regressor_3(self):
     reg = SGDRegressor(l1_ratio=0.2, penalty="l1")
     reg.fit(self.X_train, self.y_train)
Exemplo n.º 2
0
 def test_sgd_regressor_1(self):
     reg = SGDRegressor(learning_rate="optimal", eta0=0.2)
     reg.fit(self.X_train, self.y_train)
Exemplo n.º 3
0
 def test_sgd_regressor_2(self):
     reg = SGDRegressor(early_stopping=False, validation_fraction=0.2)
     reg.fit(self.X_train, self.y_train)
Exemplo n.º 4
0
 def test_sgd_regressor(self):
     reg = SGDRegressor(loss="squared_loss", epsilon=0.2)
     reg.fit(self.X_train, self.y_train)
Exemplo n.º 5
0
    def test_sgd_regressor_3(self):
        from sklearn.linear_model import SGDRegressor

        reg = SGDRegressor(l1_ratio=0.2, penalty='l1')
        reg.fit(self.X_train, self.y_train)
Exemplo n.º 6
0
    def test_sgd_regressor_2(self):
        from lale.lib.sklearn import SGDRegressor

        reg = SGDRegressor(early_stopping=False, validation_fraction=0.2)
        reg.fit(self.X_train, self.y_train)
Exemplo n.º 7
0
    def test_sgd_regressor_1(self):
        from lale.lib.sklearn import SGDRegressor

        reg = SGDRegressor(learning_rate='optimal', eta0=0.2)
        reg.fit(self.X_train, self.y_train)
Exemplo n.º 8
0
    def test_sgd_regressor(self):
        from lale.lib.sklearn import SGDRegressor

        reg = SGDRegressor(loss='squared_loss', epsilon=0.2)
        reg.fit(self.X_train, self.y_train)