Exemplo n.º 1
0
 def mean_lags(tracks):
     """Calculate mean lag in velocity and turning angle of track(s)"""
     means = []
     for _, track in tracks.groupby(track_identifiers(tracks)):
         lags = np.mean(track[['Velocity', 'Turning Angle']].diff()**2)
         if not np.isnan(lags).any():
             means.append(lags)
     return np.mean(means, axis=0)
Exemplo n.º 2
0
def _split_at_skip(tracks, jump_threshold, verbose):
    """Split track if timestep is missing or too long"""
    if 'Time' not in tracks.columns:
        return

    if not tracks.index.is_unique:
        tracks.reset_index(drop=True, inplace=True)

    if 'Track_ID' in tracks.columns:
        max_track_id = tracks['Track_ID'].max()
    else:
        max_track_id = 0

    for criterium, track in tracks.groupby(track_identifiers(tracks)):
        timesteps = track['Time'].diff()
        skips = ((timesteps - timesteps.min())/timesteps.min()).round()
        if skips.max() > 0:
            index = track.index
            if 'Track_ID' in track.columns:
                tracks.loc[index, 'Orig. Track_ID'] = track['Track_ID']
            skip_sum = skips.fillna(0).cumsum()
            tracks.loc[index, 'Track_ID'] = max_track_id + 1 + skip_sum
            max_track_id += max(skip_sum) + 1
            if verbose:
                print('  Warning: Split track {} with non-uniform timesteps.'
                    .format(criterium))

    if jump_threshold is None:
        return

    for criterium, track in tracks.groupby(track_identifiers(tracks)):
        positions = track[['X', 'Y', 'Z']]
        dr = positions.diff()
        dr_norms = np.linalg.norm(dr, axis=1)
        skips = dr_norms > jump_threshold
        if skips.max() > 0:
            index = track.index
            if 'Track_ID' in track.columns:
                tracks.loc[index, 'Orig. Track_ID'] = track['Track_ID']
            skip_sum = skips.cumsum()
            tracks.loc[index, 'Track_ID'] = max_track_id + 1 + skip_sum
            max_track_id += max(skip_sum) + 1
            if verbose:
                print('  Warning: Split track {} with jump > {}um.'
                    .format(criterium, jump_threshold))
Exemplo n.º 3
0
def plot_arrest(tracks, condition='Condition', arrest_velocity=3, save=False,
    context='notebook'):
    """Plot velocity aligned to minimum and distribution of arrested steps"""
    if 'Displacement' not in tracks.columns:
        tracks = analyze(tracks)

    if condition not in tracks.columns:
        tracks[condition] = 'Default'

    sns.set(style='ticks', context=context)
    fig, axes = plt.subplots(1, 2, figsize=(8, 5.5))
    axes[0].set_xlabel('Time to minimum')
    axes[0].set_ylabel('Velocity')
    axes[1].set_xlabel(r'Consecutive steps below {} $\mu$m/min'.format(arrest_velocity))
    axes[1].set_ylabel('Proportion')

    for i, (cond, cond_tracks) in enumerate(tracks.groupby(condition)):
        velocities = pd.Series()
        arrested_segment_lengths = []
        for _, track in cond_tracks.groupby(track_identifiers(cond_tracks)):
            min_index = track['Velocity'].argmin()
            track_velocities = pd.Series(
                track['Velocity'].values, track['Time'] - track.loc[min_index, 'Time'])
            velocities = velocities.append(track_velocities.dropna())
            arrested = track['Velocity'] < arrest_velocity
            arrested_segments = np.split(arrested, np.where(np.diff(arrested))[0] + 1)
            arrested_segment_lengths.extend([sum(segment)
                for segment in arrested_segments
                if sum(segment) > 0])

        velocities.index = np.round(velocities.index, 5)  # Handle non-integer 'Times'
        arrestats = velocities.groupby(velocities.index).describe().unstack()

        color = sns.color_palette(n_colors=i+1)[-1]
        axes[0].plot(arrestats.index, arrestats['50%'], color=color)
        axes[0].fill_between(arrestats.index, arrestats['25%'], arrestats['75%'],
            color=color, alpha=0.2)
        axes[0].fill_between(arrestats.index, arrestats['min'], arrestats['max'],
            color=color, alpha=0.2)

        sns.distplot(arrested_segment_lengths, bins=np.arange(1,
            max(arrested_segment_lengths) + 1) - 0.5,
            norm_hist=True, kde=False, color=color, ax=axes[1])

    axes[0].set_xlim([-3, 3])
    axes[1].get_xaxis().set_major_locator(plt.MaxNLocator(integer=True))
    sns.despine()
    plt.tight_layout()
    if save:
        conditions = [cond.replace('= ', '')
            for cond in tracks[condition].unique()]
        plt.savefig('Arrest_' + '-'.join(conditions) + '.png', dpi=300)
    else:
        plt.show()
Exemplo n.º 4
0
def plot_dr(raw_tracks, save=False, condition='Condition', context='notebook'):
    """Plot the differences in X, Y (and Z) to show biases"""
    tracks = raw_tracks.copy()
    _uniquize_tracks(tracks)
    _split_at_skip(tracks)

    dimensions = [dim for dim in ['X', 'Y', 'Z'] if dim in tracks.columns]

    differences = pd.DataFrame()

    for _, track in tracks.groupby(track_identifiers(tracks)):
        differences = differences.append(track[dimensions].diff().dropna())
        if 'Track_ID' in differences.columns:
            differences = differences.fillna(track['Track_ID'].iloc[0])
        else:
            differences['Track_ID'] = track['Track_ID'].iloc[0]

    sns.set(style="ticks", palette='deep', context=context)
    fig, axes = plt.subplots(ncols=3, figsize=(15.5,5.5))
    plt.setp(axes, yticks=[])
    plt.setp(axes, xticks=[])

    axes[0].set_title(r'$\Delta \vec r$')
    axes[0].set_xticks([0])
    axes[0].set_xticklabels([r'$0$'])

    for dimension in dimensions:
        sns.kdeplot(differences[dimension], shade=True, ax=axes[0])

    axes[1].set_title('Joint Distribution')
    axes[1].set_xlabel(r'$\Delta x$')
    axes[1].set_ylabel(r'$\Delta y$')
    axes[1].axis('equal')
    axes[1].set_xlim([differences['X'].quantile(0.1), differences['X'].quantile(0.9)])
    axes[1].set_ylim([differences['Y'].quantile(0.1), differences['Y'].quantile(0.9)])
    sns.kdeplot(differences[['X', 'Y']], shade=False, cmap='Greys', ax=axes[1])

    axes[2].set_title(r'$\Delta \vec r$ Lag Plot')
    axes[2].axis('equal')
    axes[2].set_xlabel(r'$\Delta r_i(t)$')
    axes[2].set_ylabel(r'$\Delta r_i(t+1)$')
    for i, dim in enumerate(dimensions):
        color = sns.color_palette()[i]
        for _, track in differences.groupby('Track_ID'):
            axes[2].scatter(track[dim], track[dim].shift(), facecolors=color)

    sns.despine()
    plt.tight_layout()
    if save:
        conditions = [cond.replace('= ', '')
            for cond in tracks[condition].unique()]
        plt.savefig('dr_' + '-'.join(conditions) + '.png', dpi=300)
    else:
        plt.show()
Exemplo n.º 5
0
def _uniquize_tracks(tracks, verbose):
    """Cluster tracks, if not unique"""
    if 'Time' not in tracks.columns:
        return

    tracks['Orig. Index'] = tracks.index
    if not tracks.index.is_unique:
        tracks.reset_index(drop=True, inplace=True)

    if 'Track_ID' in tracks.columns:
        max_track_id = tracks['Track_ID'].max()
    else:
        max_track_id = 0

    for identifiers, track in tracks.groupby(track_identifiers(tracks)):
        if sum(track['Time'].duplicated()) != 0:
            n_clusters = track['Time'].value_counts().max()
            track = track.copy()
            index = track.index
            if 'Track_ID' in track.columns:
                tracks.loc[index, 'Orig. Track_ID'] = track['Track_ID']

            clusters = AgglomerativeClustering(n_clusters).fit(
                track[['X', 'Y', 'Z']])
            track.loc[:, 'Cluster'] = clusters.labels_

            if sum(track[['Cluster', 'Time']].duplicated()) != 0:
                clusters = AgglomerativeClustering(n_clusters).fit(
                    track[['Orig. Index']])
                track.loc[:, 'Cluster'] = clusters.labels_

            if sum(track[['Cluster', 'Time']].duplicated()) == 0:
                tracks.loc[index, 'Track_ID'] = max_track_id+1+clusters.labels_
                max_track_id += n_clusters
                pd.set_option('display.max_rows', 1000)
                if verbose:
                    print('  Warning: Split non-unique track {} by clustering.'
                        .format(identifiers))
            else:
                tracks.drop(index, inplace=True)
                if verbose:
                    print('  Warning: Delete non-unique track {}.'
                        .format(identifiers))
Exemplo n.º 6
0
def plot_situation(tracks, n_tracks=6*3, n_dcs=50, tcz_volume=0.524e9/400,
    min_distance=0, min_distance_std=200/10, zoom=1, t_detail=None, save=False,
    context='notebook'):
    """Plot some T cell tracks, DC positions and T cell zone volume"""
    sns.set(style='ticks', context=context)

    _ = plt.figure(figsize=(8, 5.5))
    gs = gridspec.GridSpec(2,3)
    space_ax = plt.subplot(gs[:,:-1], projection='3d')
    time_ax = plt.subplot(gs[0,-1])
    reach_ax = plt.subplot(gs[1,-1])
    plt.locator_params(nbins=6)

    space_ax.set_title('{} T Cell Tracks & {} DCs'.format(n_tracks, n_dcs))

    n_conditions = len(tracks['Condition'].unique())
    palette = itertools.cycle(sns.color_palette())

    if min_distance_std != 0:
        moved_tracks = tracks.copy()
        for id in tracks['Track_ID'].unique():
            moved_tracks.loc[moved_tracks['Track_ID'] == id, ['X', 'Y', 'Z']] += \
                np.random.randn(3)*min_distance_std
    else:
        moved_tracks = tracks

    for i, (cond, cond_tracks) in enumerate(moved_tracks.groupby('Condition')):
        choice = np.random.choice(cond_tracks['Track_ID'].unique(),
            n_tracks/n_conditions)
        chosen_tracks = cond_tracks[cond_tracks['Track_ID'].isin(choice)]
        for _, track in chosen_tracks.groupby(track_identifiers(chosen_tracks)):
            if t_detail:
                track = track[track['Time'] <= t_detail*60]
            if n_conditions > 1:
                color = sns.color_palette(n_colors=i+1)[-1]
            else:
                color = next(palette)
            space_ax.plot(track['X'].values, track['Y'].values, track['Z'].values,
                color=color)

    tcz_radius = (3*tcz_volume/(4*np.pi))**(1/3)
    ratio = (min_distance/tcz_radius)**3
    r = tcz_radius*(ratio + (1 - ratio)*np.random.rand(n_dcs))**(1/3)
    theta = np.random.rand(n_dcs)*2*np.pi
    phi = np.arccos(2*np.random.rand(n_dcs) - 1)
    dcs = pd.DataFrame({
        'X': r*np.sin(theta)*np.sin(phi),
        'Y': r*np.cos(theta)*np.sin(phi),
        'Z': r*np.cos(phi)})
    space_ax.scatter(dcs['X'], dcs['Y'], dcs['Z'], c='y')

    r = (3*tcz_volume/(4*np.pi))**(1/3)
    for i in ['x', 'y', 'z']:
        circle = Circle((0, 0), r, fill=False, linewidth=2)
        space_ax.add_patch(circle)
        art3d.pathpatch_2d_to_3d(circle, z=0, zdir=i)

    time_ax.set_xlabel('Time within Lymph Node [h]')
    time_ax.set_ylabel('Probab. Density')

    reach_ax.set_xlabel(r'Maximal Reach [$\mu$m]')
    reach_ax.set_ylabel('Probab. Density')

    def residence_time(track): return track['Time'].diff().mean()/60*len(
        track[np.linalg.norm(track[['X', 'Y', 'Z']], axis=1) < r])

    for i, (cond, cond_tracks) in enumerate(moved_tracks.groupby('Condition')):
        color = sns.color_palette(n_colors=i+1)[-1]
        residence_times = [residence_time(track)
            for _, track in cond_tracks.groupby('Track_ID')]
        if not all(time == residence_times[0] for time in residence_times):
            sns.distplot(residence_times, kde=False, norm_hist=True, ax=time_ax,
                label=cond, color=color)
        max_reaches = [max(np.linalg.norm(track[['X', 'Y', 'Z']], axis=1))
            for _, track in cond_tracks.groupby('Track_ID')]
        sns.distplot(max_reaches, kde=False, norm_hist=True, ax=reach_ax,
            label=cond, color=color)

    time_ax.set_yticks([])
    time_ax.axvline(np.median(residence_times), c='0', ls=':')
    sns.despine(ax=time_ax)
    reach_ax.set_yticks([])
    reach_ax.legend()
    reach_ax.axvline(tcz_radius, c='0', ls=':')
    sns.despine(ax=reach_ax)
    equalize_axis3d(space_ax, zoom)
    plt.tight_layout()

    if save == True:
        save = 'situation.png'

    if save:
        plt.savefig(save, dpi=300)
    else:
        plt.show()
Exemplo n.º 7
0
def summarize(tracks, arrest_velocity=3, skip_steps=4):
    """Summarize track statistics, e.g. mean velocity per track"""
    if 'Displacement' not in tracks.columns:
        tracks = analyze(tracks)

    print('\nSummarizing track statistics')

    summary = pd.DataFrame()

    for i, (_, track) in enumerate(tracks.groupby(track_identifiers(tracks))):
        if 'Track_ID' in track.columns:
            summary.loc[i, 'Track_ID'] = track.iloc[0]['Track_ID']
        if 'Condition' in track.columns:
            summary.loc[i, 'Condition'] = track.iloc[0]['Condition']
        else:
            summary.loc[i, 'Condition'] = 'Default'
        if 'Sample' in track.columns:
            summary.loc[i, 'Sample'] = track.iloc[0]['Sample']

        summary.loc[i, 'Mean Velocity'] = track['Velocity'].mean()
        summary.loc[i, 'Mean Turning Angle'] = track['Turning Angle'].mean()
        if 'Plane Angle' in track.columns:
            summary.loc[i, 'Mean Plane Angle'] = track['Plane Angle'].mean()

        summary.loc[i, 'Track Duration'] = \
            track['Time'].iloc[-1] - track['Time'].iloc[0]

        summary.loc[i, 'Arrest Coefficient'] = \
            len(track[track['Velocity'] < arrest_velocity])/ \
            len(track['Velocity'].dropna())

        if 'Z' in track.columns:
            positions = track[['X', 'Y', 'Z']]
            ndim = 3
        else:
            positions = track[['X', 'Y']]
            ndim = 2

        summary.loc[i, 'Motility Coefficient'] = np.pi* \
            track['Displacement'].iloc[-1]/(2*ndim)/track['Track Time'].max()

        dr = positions.diff()
        dr_norms = np.linalg.norm(dr, axis=1)

        summary.loc[i, 'Confinement Ratio'] = track['Displacement'].iloc[-1] \
            /dr_norms[1:].sum()

        summary.loc[i, 'Corr. Confinement Ratio'] = track['Displacement'].iloc[-1] \
            /dr_norms[1:].sum()*np.sqrt(track['Track Time'].max())

        summary.loc[i, 'Mean Sq. Velocity Lag'] = np.mean(
            track['Velocity'].diff()**2)

        summary.loc[i, 'Mean Sq. Turn. Angle Lag'] = np.mean(
            track['Turning Angle'].diff()**2)

        if len(track) > skip_steps + 1:
            dot_products = np.sum(dr.shift(-skip_steps)*dr, axis=1)
            norm_products = dr_norms[skip_steps:]*dr_norms[:-skip_steps]
            turns = np.arccos(dot_products.iloc[1:-skip_steps]/norm_products[1:])

            summary.loc[i, 'Max. Turn Over {} Steps'.format(skip_steps + 1)] = \
                max(turns)

            summary.loc[i, 'Turn Time'] = track.loc[turns.idxmax(), 'Time']

            cross_product = np.cross(dr.shift(-skip_steps).loc[turns.idxmax()],
                dr.loc[turns.idxmax()])
            normal_vec = cross_product/np.linalg.norm(cross_product)

            summary.loc[i, 'Skew Lines Distance'] = abs(np.sum(
                (positions.shift(-skip_steps).loc[turns.idxmax()] - \
                positions.loc[turns.idxmax()])*normal_vec))

        hull = ConvexHull(track[['X', 'Y', 'Z']])
        summary.loc[i, 'Scan. Area/Step'] = hull.area/len(track)
        summary.loc[i, 'Scan. Vol./Step'] = hull.volume/len(track)

        if 'Surface Area (µm2)' in track.columns:
            summary.loc[i, 'Mean Surface Area (µm2)'] = track['Surface Area (µm2)'].mean()

        if 'Volume (µm3)' in track.columns:
            summary.loc[i, 'Mean Volume (µm3)'] = track['Volume (µm3)'].mean()

        if 'Surface Area (µm2)' in track.columns and 'Volume (µm3)' in track.columns:
            summary.loc[i, 'Mean Sphericity'] = (np.pi**(1/3) \
                *(6*track['Volume (µm3)'])**(2/3)/track['Surface Area (µm2)']).mean()

    for cond, cond_summary in summary.groupby('Condition'):
        print('  {} tracks in {} with {} timesteps in total.'.format(
            cond_summary.__len__(), cond,
            tracks[tracks['Condition'] == cond].__len__()))

    return summary
Exemplo n.º 8
0
def plot_tracks(raw_tracks, summary=None, draw_turns=True, n_tracks=25,
    condition='Condition', context='notebook', save=False):
    """Plot tracks"""
    tracks = raw_tracks.copy()
    _uniquize_tracks(tracks)

    if type(summary) == pd.core.frame.DataFrame:
        skip_steps = int(next(word
            for column in summary.columns
            for word in column.split() if word.isdigit()))

    if summary is not None and draw_turns:
        alpha = 0.33
    else:
        alpha = 1

    if condition not in tracks.columns:
        tracks[condition] = 'Default'
    n_conditions = len(tracks[condition].unique())

    sns.set(style='ticks', context=context)
    fig = plt.figure(figsize=(12,12))
    if 'Z' in tracks.columns:
        ax = fig.add_subplot(111, projection='3d')
    else:
        ax = fig.add_subplot(111, aspect='equal')
    labels = []
    for i, (cond, cond_tracks) in enumerate(tracks.groupby(condition)):
        if summary is not None and draw_turns:
            cond_summary = summary[summary[condition] == cond]
            max_turn_column = next(column for column in summary.columns
                if column.startswith('Max. Turn'))
            if len(cond_tracks['Track_ID'].unique()) > n_tracks/n_conditions:
                choice = cond_summary.sort_values(max_turn_column, ascending=False)\
                    ['Track_ID'][:int(n_tracks/n_conditions)]
                cond_tracks = cond_tracks[cond_tracks['Track_ID'].isin(choice)]
        elif len(cond_tracks['Track_ID'].unique()) > n_tracks/n_conditions:
            choice = np.random.choice(cond_tracks['Track_ID'].unique(),
                n_tracks/n_conditions, replace=False)
            cond_tracks = cond_tracks[cond_tracks['Track_ID'].isin(choice)]

        color = sns.color_palette(n_colors=i+1)[-1]
        for j, (_, track) in enumerate(cond_tracks.groupby(track_identifiers(cond_tracks))):
            labels.append(cond)
            track_id = track['Track_ID'].iloc[0]
            if 'Z' in tracks.columns:
                ax.plot(track['X'].values, track['Y'].values, track['Z'].values,
                    color=color, alpha=alpha, label=track_id, picker=5)
            else:
                ax.plot(track['X'].values, track['Y'].values,
                    color=color, alpha=alpha, label=track_id, picker=5)
            if summary is not None and draw_turns:
                turn_time = cond_summary[cond_summary['Track_ID'] == track_id]['Turn Time']
                turn_loc = track.index.get_loc(
                    track[np.isclose(track['Time'], turn_time.values[0])].index.values[0])
                turn_times = track['Time'][turn_loc - 1:turn_loc + skip_steps]
                turn = track[track['Time'].isin(turn_times)]
                if 'Z' in tracks.columns:
                    ax.plot(turn['X'].values, turn['Y'].values, turn['Z'].values,
                        color=color)
                else:
                    ax.plot(turn['X'].values, turn['Y'].values, color=color)

    def on_pick(event):
        track_id = event.artist.get_label()
        if summary is not None:
            print(summary[summary['Track_ID'] == float(track_id)]
                [['Track_ID', 'Condition', 'Mean Velocity', 'Track Duration']])
        else:
            print('Track_ID: ' + track_id)

    fig.canvas.mpl_connect('pick_event', on_pick)

    if 'Z' in tracks.columns:
        equalize_axis3d(ax)
    else:
        sns.despine()
    handles, _ = ax.get_legend_handles_labels()
    unique_entries = OrderedDict(zip(labels, handles))
    ax.legend(unique_entries.values(), unique_entries.keys())
    plt.tight_layout()

    if save:
        conditions = [cond.replace('= ', '')
            for cond in tracks[condition].unique()]
        plt.savefig('Tracks' + '-'.join(conditions) + '.png', dpi=300)
    else:
        plt.show()
Exemplo n.º 9
0
def analyze(raw_tracks, uniform_timesteps=True, min_length=6, jump_threshold=None,
    verbose=True):
    """Return dataframe with velocity, turning angle & plane angle"""
    print('\nAnalyzing tracks')

    tracks = raw_tracks.copy()

    if 'Time' not in tracks.columns:
        print('  Warning: no time given, using index!')
        tracks['Time'] = tracks.index
        if not tracks.index.is_unique: # For inplace analysis!
            tracks.reset_index(drop=True, inplace=True)
    else:
        _uniquize_tracks(tracks, verbose)
        if uniform_timesteps:
            _split_at_skip(tracks, jump_threshold, verbose)

    if not verbose and 'Orig. Track_ID' in tracks.columns:
        print('  Warning: Some tracks were split, use verbose=True for more info.')

    n_i = tracks.Track_ID.unique().size
    for criterium, track in tracks.groupby(track_identifiers(tracks)):
        if len(track) < min_length:
            tracks.drop(track.index, inplace=True)
            if verbose:
                print('  Warning: Delete track {} with {} timesteps.'
                    .format(criterium, len(track)))
        else:
            tracks.loc[track.index, 'Track Time'] = \
                (track['Time'] - track['Time'].iloc[0]).round(4)

            if 'Z' in track.columns:
                positions = track[['X', 'Y', 'Z']]
            else:
                positions = track[['X', 'Y']].copy()
                positions['Z'] = 0

            tracks.loc[track.index, 'Displacement'] = \
                np.linalg.norm(positions - positions.iloc[0], axis=1)

            dr = positions.diff()
            dr_norms = np.linalg.norm(dr, axis=1)

            tracks.loc[track.index, 'Velocity'] = dr_norms/track['Time'].diff()

            dot_products = np.sum(dr.shift(-1)*dr, axis=1)
            norm_products = dr_norms[1:]*dr_norms[:-1]

            tracks.loc[track.index, 'Turning Angle'] = \
                np.arccos(dot_products[:-1]/norm_products)

            tracks.loc[track.index, 'Plane Angle'] = np.nan

            n_vectors = np.cross(dr, dr.shift())
            n_norms = np.linalg.norm(n_vectors, axis=1)
            dot_products = np.sum(n_vectors[1:]*n_vectors[:-1], axis=1)
            norm_products = n_norms[1:]*n_norms[:-1]
            angles = np.arccos(dot_products/norm_products)
            cross_products = np.cross(n_vectors[1:], n_vectors[:-1])
            cross_dot_dr = np.sum(cross_products[2:]*dr.as_matrix()[2:-1],
                axis=1)
            cross_norms = np.linalg.norm(cross_products[2:], axis=1)
            signs = cross_dot_dr/cross_norms/dr_norms[2:-1]

            if 'Z' in track.columns:
                tracks.loc[track.index[2:-1], 'Plane Angle'] = signs*angles[2:]
            else:
                tracks.loc[track.index[2:-1], 'Plane Angle'] = angles[2:]

    n_f = tracks.Track_ID.unique().size
    if not verbose and n_f != n_i:
        print('  Warning: Some tracks were deleted, use verbose=True for more info.')

    return tracks