Exemplo n.º 1
0
    def test_player_game(self):
        players = [
            LearningPlayer(name='random',
                           estimation_mode=LearningPlayer.ACTUAL_Q)
        ] * 3
        game = LandlordGame(players=players)
        hands = {
            TurnPosition.FIRST: [Card.ACE] * 4 + [Card.KING] * 4 +
            [Card.QUEEN] * 4 + [Card.JACK] * 4 + [Card.THREE],
            TurnPosition.SECOND: [Card.TEN] * 4 + [Card.NINE] * 4 +
            [Card.EIGHT] * 4 + [Card.SEVEN] * 4 + [Card.THREE],
            TurnPosition.THIRD: [Card.FIVE] * 4 + [Card.FOUR] * 4 +
            [Card.SIX] * 4 + [Card.TWO] * 4 + [Card.THREE] * 2 +
            [Card.LITTLE_JOKER] + [Card.BIG_JOKER]
        }
        game._betting_complete = True
        game.force_setup(TurnPosition.THIRD, hands, 3)
        game.main_game()
        players[0].compute_future_q(game)
        self.assertTrue(np.sum(np.abs(game.get_scores())) > 0)
        # game is over
        self.assertTrue(np.abs(players[0]._record_future_q[-1]) > 0.5)

        features = players[0]._derive_features(game)
        self.assertTrue(
            np.sum(features[:, players[0].get_feature_index('I_AM_LANDLORD')])
            != 0)
        # it is possible this guy never plays, eventually
        self.assertTrue(
            np.sum(features[:, players[0].
                            get_feature_index('I_AM_BEFORE_LANDLORD')]) != 0)
Exemplo n.º 2
0
 def test_endgame_scenario(self):
     players = [LearningPlayer('v1')] * 3
     game = LandlordGame(players=players)
     hands = {
         TurnPosition.FIRST: [Card.ACE] * 1,
         TurnPosition.SECOND: [Card.TEN] * 1,
         TurnPosition.THIRD: [Card.JACK, Card.QUEEN]
     }
     game._betting_complete = True
     game.force_setup(TurnPosition.THIRD, hands, 2)
     game.main_game()
     self.assertTrue(TurnPosition.FIRST in game.get_winners())
     self.assertTrue(len(game.get_move_logs()) == 2)
Exemplo n.º 3
0
 def test_llord_winning(self):
     players = [LearningPlayer(name='random')] * 3
     game = LandlordGame(players=players)
     hands = {
         TurnPosition.FIRST: [Card.ACE] * 4 + [Card.KING] * 4 +
         [Card.QUEEN] * 4 + [Card.JACK] * 4 + [Card.THREE],
         TurnPosition.SECOND: [Card.TEN] * 4 + [Card.NINE] * 4 +
         [Card.EIGHT] * 4 + [Card.SEVEN] * 4 + [Card.THREE],
         TurnPosition.THIRD: [Card.FIVE] * 4
     }
     game._betting_complete = True
     game.force_setup(TurnPosition.THIRD, hands, 3)
     game.main_game()
     self.assertTrue(TurnPosition.THIRD in game.get_winners())
     self.assertTrue(len(game.get_move_logs()) == 1)
Exemplo n.º 4
0
 def test_bet_3(self):
     players = [LearningPlayer('v1')] * 3
     game = LandlordGame(players=players)
     game.play_move(BetMove(0))
     game.play_move(BetMove(3))
     self.assertFalse(game.is_round_over())
     self.assertTrue(game.is_betting_complete())
     self.assertTrue(game.get_bet_amount() == 3)
Exemplo n.º 5
0
 def test_extended_game(self):
     game = LandlordGame(players=[RandomPlayer(name='random')] * 3)
     game.play_round()
     game2 = copy(game)
     self.assertTrue(game.get_move_logs() == game2.get_move_logs())
     self.assertTrue(
         game.get_hand(TurnPosition.SECOND) == game2.get_hand(
             TurnPosition.SECOND))
     self.assertTrue(game.get_last_played() == game2.get_last_played())
Exemplo n.º 6
0
    def test_hand_vector_v2(self):
        players = [
            LearningPlayer_v2(name='random',
                              estimation_mode=LearningPlayer.ACTUAL_Q)
            for _ in range(3)
        ]
        game = LandlordGame(players=players)
        hands = {
            TurnPosition.FIRST: [Card.ACE] * 4,
            TurnPosition.SECOND: [Card.TEN] * 3 + [Card.THREE],
            TurnPosition.THIRD: [Card.FIVE] * 3 + [Card.THREE] + [Card.FOUR]
        }
        game._betting_complete = True
        game.force_setup(TurnPosition.SECOND, hands, 3)
        best_move = SpecificMove(RankedMoveType(MoveType.TRIPLE_SINGLE_KICKER,
                                                Card.TEN),
                                 cards=Counter({
                                     Card.TEN: 3,
                                     Card.THREE: 1
                                 }))
        move_vector = players[1].compute_move_vector(
            TurnPosition.SECOND, game.get_landlord_position(), best_move)
        remaining_hand_vector = players[1].compute_remaining_hand_vector(
            game, move_vector, TurnPosition.SECOND)[:-3]

        self.assertEqual(np.sum(remaining_hand_vector), 0)
Exemplo n.º 7
0
 def test_landlord_bombing(self):
     players = [LearningPlayer('v1')] * 3
     game = LandlordGame(players=players)
     hands = {
         TurnPosition.FIRST: [Card.ACE] * 4 + [Card.THREE],
         TurnPosition.SECOND: [Card.TEN] * 4 + [Card.THREE],
         TurnPosition.THIRD: [Card.FIVE] * 4 + [Card.THREE]
     }
     game._betting_complete = True
     game.force_setup(TurnPosition.THIRD, hands, 2)
     game.play_move(
         SpecificMove(RankedMoveType(MoveType.BOMB, Card.FIVE),
                      Counter({Card.FIVE: 4})))
     self.assertTrue(game._bet_amount == 4)
Exemplo n.º 8
0
 def test_player_move(self):
     players = [LearningPlayer(name='random')] * 3
     game = LandlordGame(players=players)
     hands = {
         TurnPosition.FIRST: [Card.ACE] * 4 + [Card.KING] * 4 +
         [Card.QUEEN] * 4 + [Card.JACK] * 4 + [Card.THREE],
         TurnPosition.SECOND: [Card.TEN] * 4 + [Card.NINE] * 4 +
         [Card.EIGHT] * 4 + [Card.SEVEN] * 4 + [Card.THREE],
         TurnPosition.THIRD: [Card.FIVE] * 4 + [Card.FOUR] * 4 +
         [Card.SIX] * 4 + [Card.TWO] * 4 + [Card.THREE] * 2 +
         [Card.LITTLE_JOKER] + [Card.BIG_JOKER]
     }
     game._betting_complete = True
     game.force_setup(TurnPosition.THIRD, hands, 3)
     game2 = copy(game)
     game.play_move(
         SpecificMove(RankedMoveType(MoveType.BOMB, Card.FIVE),
                      Counter({Card.FIVE: 4})))
     self.assertNotEqual(game2.get_hand(TurnPosition.THIRD),
                         game.get_hand(TurnPosition.THIRD))
Exemplo n.º 9
0
    def test_full_game(self):
        players = [LearningPlayer(name='random') for _ in range(3)]
        game = LandlordGame(players=players)
        game.play_round()

        while np.sum(np.abs(game.get_scores())) == 0:
            players = [LearningPlayer(name='random') for _ in range(3)]
            game = LandlordGame(players=players)
            game.play_round()

        # game is over
        for i in range(3):
            # print(players[i].record_future_q[-1])
            # self.assertTrue(np.abs(players[i].record_future_q[-1]) > 0.5)

            features = players[i]._derive_features(game)
            self.assertTrue(
                np.sum(features[:, players[i].get_feature_index('I_AM_LANDLORD'
                                                                )]) != 0)
            # it is possible this guy never plays, eventually
            self.assertTrue(
                np.sum(features[:, players[i].
                                get_feature_index('I_AM_BEFORE_LANDLORD')]) !=
                0)
Exemplo n.º 10
0
 def test_landlord_game_ending(self):
     players = [LearningPlayer('v1')] * 3
     game = LandlordGame(players=players)
     hands = {
         TurnPosition.FIRST: [Card.ACE] * 4,
         TurnPosition.SECOND: [Card.TEN] * 4,
         TurnPosition.THIRD: [Card.FIVE] * 4
     }
     game._betting_complete = True
     game.force_setup(TurnPosition.THIRD, hands, 2)
     self.assertTrue(
         game.move_ends_game(
             SpecificMove(RankedMoveType(MoveType.BOMB, Card.FIVE),
                          Counter({Card.FIVE: 4}))))
     self.assertFalse(
         game.move_ends_game(
             SpecificMove(RankedMoveType(MoveType.BOMB, Card.TEN),
                          Counter({Card.TEN: 4}))))
Exemplo n.º 11
0
    def play_game(self):
        while True:
            players = self.pick_players()
            game = LandlordGame(players=players)
            # play a meaningful game
            game.play_round()
            if game.has_winners():
                players_to_record = game._winners
                if random.random() < self.record_everyone_pct:
                    players_to_record = list(TurnPosition)
                for pos in players_to_record:
                    player = game.get_ai(pos)
                    self.record_player(game, player)
                self.track_stats(game)
                break

            # clear out in case a full game wasn't played
            for player in players:
                player._reset_records()
Exemplo n.º 12
0
    def test_record_actual_q(self):
        def load_best_sim_net(net):
            return LearningPlayer(name=net,
                                  net_dir='../models/' + net,
                                  estimation_mode=LearningPlayer.ACTUAL_Q,
                                  epsilon=0,
                                  discount_factor=1)

        players = [load_best_sim_net('4_2_sim4_model10') for i in range(3)]
        player_0_scores = []
        game = LandlordGame(players=players)
        while not game.is_round_over():
            curr_player = game.get_current_player()

            best_move, best_move_q = curr_player.decide_best_move(game)
            if curr_player == players[0]:
                player_0_scores.append(best_move_q)

            curr_player.make_move(game)

            game.play_move(best_move)

        for player in players:
            player.compute_future_q(game)

        record_state = players[0]._record_state_q
        future_q = players[0].get_estimated_qs()
        # assert in bounds based on update function
        for i, val in enumerate(record_state):
            if i != len(record_state) - 1:
                if record_state[i + 1] < record_state[i]:
                    self.assertTrue(
                        record_state[i + 1] < future_q[i] < record_state[i])
                elif record_state[i + 1] > record_state[i]:
                    self.assertTrue(
                        record_state[i + 1] > future_q[i] > record_state[i])

        self.assertEqual(len(players[0].get_record_hand_vectors()),
                         len(players[0].get_estimated_qs()))
Exemplo n.º 13
0
 def test_nobet_game(self):
     game = LandlordGame(players=[NoBetPlayer(name='random')] * 3)
     game.play_round()
     self.assertTrue(np.sum(np.abs(game._scores)) == 0)
Exemplo n.º 14
0
    def test_self_feed(self):
        players = [self.load_v2_net("4_8_actualq1_model20") for _ in range(3)]
        #players = [self.load_v2_net("4_2_sim4_model15") for _ in range(3)]
        game = LandlordGame(players=players)
        best_move_qs = []
        all_history_features = []
        history_vectors = []
        all_hand_vectors = []
        all_move_vectors = []
        while not game.is_round_over():

            best_move, best_move_q = game.get_current_player(
            ).decide_best_move(game, game.get_current_position())

            game.get_current_player().record_move(game, best_move, best_move_q,
                                                  game.get_current_position())

            if game.get_current_player() == players[0]:
                history_features = players[0]._derive_features(game)
                all_history_features.append(history_features)
                # all the moves we make from here will not affect the history, so assess it and copy

                history_vectors.append(players[0].history_net.predict(
                    np.array([history_features]), batch_size=1)[0])

                # create features for each of the possible moves from this position
                all_move_vectors.append(players[0].compute_move_vector(
                    game.get_current_position(), game.get_landlord_position(),
                    best_move))

                all_hand_vectors.append(
                    players[0].compute_remaining_hand_vector(
                        game, all_move_vectors[-1],
                        game.get_current_position()))

                predicted_q = players[0].position_net.predict([
                    np.array([history_vectors[-1]]),
                    np.array([all_move_vectors[-1]]),
                    np.array([all_hand_vectors[-1]])
                ])[0][0]

                self.assertAlmostEqual(predicted_q, best_move_q, places=4)

                best_move_qs.append(best_move_q)

            game.play_move(best_move)

        players[0].compute_future_q(game)

        history_matrices = players[0].get_record_history_matrices()

        for i, j in zip(all_history_features, history_matrices):
            self.assertTrue(np.allclose(i, j))

        move_vectors = players[0].get_record_move_vectors()

        for i, j in zip(all_move_vectors, move_vectors):
            self.assertTrue(np.allclose(i, j))

        hand_vectors = players[0].get_record_hand_vectors()

        for i, j in zip(all_hand_vectors, hand_vectors):
            self.assertTrue(np.allclose(i, j))

        qs = players[0].get_estimated_qs()
        pred_qs = []
        # recreate
        for i, records in enumerate(
                zip(history_matrices, move_vectors, hand_vectors, qs)):
            history_matrix, move_vector, hand_vector, q = records

            history_vector = players[0].history_net.predict(
                np.array([history_matrix]))[0]
            self.assertTrue(np.allclose(history_vector, history_vectors[i]))

            pred_qs.append(players[0].position_net.predict([[history_vector],
                                                            [move_vector],
                                                            [hand_vector]
                                                            ])[0][0])
            # works only if learning rate is 0
        self.assertTrue(np.allclose(qs, pred_qs))
Exemplo n.º 15
0
    def test_features_v2(self):
        players = [
            LearningPlayer_v2(name='random',
                              epsilon=0,
                              estimation_mode=LearningPlayer.ACTUAL_Q,
                              learning_rate=1) for _ in range(3)
        ]
        game = LandlordGame(players=players)
        while not game.is_round_over():
            curr_player = game.get_current_player()
            curr_features = curr_player._derive_features(game)

            best_move, best_move_q = curr_player.decide_best_move(game)
            curr_move_vector = game.get_current_player().compute_move_vector(
                game.get_current_position(), game.get_landlord_position(),
                best_move)
            curr_hand_vector = game.get_current_player(
            ).compute_remaining_hand_vector(game, curr_move_vector,
                                            game.get_current_position())

            curr_player.record_move(game, best_move, best_move_q,
                                    game.get_current_position())
            game.play_move(best_move)

            self.assertTrue(
                np.allclose(curr_features,
                            curr_player.record_history_matrices[-1]))
            self.assertTrue(
                np.allclose(curr_move_vector,
                            curr_player.record_move_vectors[-1]))
            self.assertTrue(
                np.allclose(curr_hand_vector,
                            curr_player.record_hand_vectors[-1]))

        players[0].compute_future_q(game)

        if game.has_winners():
            print(np.max(np.abs(players[0].get_estimated_qs())))
            self.assertTrue(np.max(np.abs(players[0].get_estimated_qs())) == 1)

        self.assertTrue(
            players[0].record_history_matrices[0][0].dtype == np.int8)
Exemplo n.º 16
0
 def track_stats(self, game: LandlordGame):
     assert game.is_round_over()
     winners = tuple(
         [player.get_name() for player in game.get_winner_ais()])
     losers = tuple([player.get_name() for player in game.get_loser_ais()])
     self.results.append((winners, losers))
Exemplo n.º 17
0
def play_against_two(players, show_q=True):
    game = LandlordGame(players)
    while not game.is_round_over():
        current_player = game.get_current_player()
        current_position = game.get_current_position()

        best_move, best_move_q = current_player.decide_best_move(game)

        if show_q:
            best_move_q_str = '(' + str(best_move_q) + ')'
        else:
            best_move_q_str = ''

        print(current_player.get_name(), "(" + game.get_position_role_name(current_position) + ", " \
                  + str(len(game.get_hand(current_position))) + "):", best_move, best_move_q_str)
        game.play_move(best_move)

        if type(game.get_last_played()) == KittyReveal:
            print(game.get_last_played())

    if game.has_winners():
        for winner in game.get_winners():
            print('WINNERS:', game.get_ai_players()[winner].get_name())
Exemplo n.º 18
0
    def test_features(self):
        players = [
            LearningPlayer(name='random',
                           estimation_mode=LearningPlayer.ACTUAL_Q)
            for _ in range(3)
        ]
        game = LandlordGame(players=players)
        while not game.is_round_over():
            curr_player = game.get_current_player()
            curr_features = curr_player._derive_features(game)
            curr_hand_vector = game.get_current_player().get_hand_vector(
                game, game.get_current_position())
            move = game.get_current_player().make_move(
                game, game.get_current_position())
            curr_move_vector = game.get_current_player().compute_move_vector(
                game.get_current_position(), game.get_landlord_position(),
                move)

            game.play_move(move)

            self.assertTrue(
                np.allclose(curr_features,
                            curr_player.record_history_matrices[-1]))
            self.assertTrue(
                np.allclose(curr_move_vector,
                            curr_player.record_move_vectors[-1]))
            self.assertTrue(
                np.allclose(curr_hand_vector,
                            curr_player.record_hand_vectors[-1]))
Exemplo n.º 19
0
 def test_best_montecarlo(self):
     players = [LearningPlayer(name='random')] * 3
     game = LandlordGame(players=players)
     game.play_round(debug=False)
Exemplo n.º 20
0
 def test_peasant_winning(self):
     players = [LearningPlayer(name='random')] * 3
     game = LandlordGame(players=players)
     hands = {
         TurnPosition.FIRST: [Card.ACE] * 4,
         TurnPosition.SECOND: [Card.TEN] + [Card.THREE],
         TurnPosition.THIRD: [Card.FIVE] * 3 + [Card.THREE] + [Card.FOUR]
     }
     game._betting_complete = True
     game.force_setup(TurnPosition.THIRD, hands, 3)
     hand_vector = players[0].get_hand_vector(game, TurnPosition.FIRST)
     self.assertTrue(hand_vector[11] == 4)
     self.assertTrue(hand_vector[-2] == 2)
     self.assertTrue(hand_vector[-3] == 5)
     self.assertTrue(hand_vector[-1] == 4)
     # self.assertTrue(np.sum(hand_vector) == 4)
     game.main_game()
     self.assertTrue(TurnPosition.THIRD not in game.get_winners())
     self.assertTrue(TurnPosition.SECOND in game.get_winners())
     self.assertTrue(TurnPosition.FIRST in game.get_winners())
     self.assertTrue(len(game.get_move_logs()) == 2)
Exemplo n.º 21
0
 def test_bet_1(self):
     players = [LearningPlayer('v1')] * 3
     game = LandlordGame(players=players)
     game.play_move(BetMove(0))
     game.play_move(BetMove(0))
     self.assertFalse(game.is_round_over())
     self.assertFalse(game.is_betting_complete())
     self.assertFalse(game.move_ends_game(BetMove(1)))
     self.assertTrue(game.move_ends_game(BetMove(0)))
     game.play_move(BetMove(0))
     self.assertTrue(game.is_round_over())
     self.assertTrue(game.is_betting_complete())
Exemplo n.º 22
0
 def test_many_games(self):
     for i in range(10):
         game = LandlordGame(players=[RandomPlayer(name='random')] * 3)
         game.play_round()
Exemplo n.º 23
0
 def test_sweep(self):
     players = [LearningPlayer('v1')] * 3
     game = LandlordGame(players=players)
     hands = {
         TurnPosition.FIRST: [Card.ACE] * LandlordGame.DEAL_SIZE,
         TurnPosition.SECOND: [Card.TEN] * LandlordGame.DEAL_SIZE,
         TurnPosition.THIRD: [Card.FIVE] * 4
     }
     game._betting_complete = True
     game.force_setup(TurnPosition.THIRD, hands, 2)
     game.play_move(
         SpecificMove(RankedMoveType(MoveType.BOMB, Card.FIVE),
                      Counter({Card.FIVE: 4})))
     self.assertTrue(game.peasants_have_no_plays())
     self.assertTrue(game.get_scores()[TurnPosition.THIRD] == 2 * 2 * 2 *
                     LandlordGame.SWEEP_MULTIPLIER)
     self.assertEqual(game.get_r(), 24)
     self.assertEqual(game.get_winbased_r(), 1)
Exemplo n.º 24
0
 def test_bet_2(self):
     players = [LearningPlayer('v1')] * 3
     game = LandlordGame(players=players)
     game.play_move(BetMove(0))
     self.assertEqual(len(game.get_legal_moves()), 4)
     one_better = game.get_current_position()
     game.play_move(BetMove(1))
     self.assertFalse(game.is_round_over())
     self.assertFalse(game.is_betting_complete())
     game.play_move(BetMove(0))
     self.assertFalse(game.is_round_over())
     self.assertTrue(game.is_betting_complete())
     self.assertTrue(game.get_bet_amount() == 1)
     self.assertEqual(game.get_current_position(), one_better)
Exemplo n.º 25
0
 def test_setup(self):
     players = [LearningPlayer('v1', None)] * 3
     game = LandlordGame(players=players)
     hands = {
         TurnPosition.FIRST: [Card.ACE] * 4 + [Card.KING] * 4 +
         [Card.QUEEN] * 4 + [Card.JACK] * 4 + [Card.THREE],
         TurnPosition.SECOND: [Card.TEN] * 4 + [Card.NINE] * 4 +
         [Card.EIGHT] * 4 + [Card.SEVEN] * 4 + [Card.THREE],
         TurnPosition.THIRD: [Card.FIVE] * 4 + [Card.FOUR] * 4 +
         [Card.SIX] * 4 + [Card.TWO] * 4 + [Card.THREE] * 2 +
         [Card.LITTLE_JOKER] + [Card.BIG_JOKER]
     }
     game._betting_complete = True
     game.force_setup(TurnPosition.THIRD, hands, 2)
     self.assertTrue(game.get_current_position() == TurnPosition.THIRD)
     game.play_move(None)
     self.assertTrue(
         game.get_current_position() == TurnPosition.THIRD.next())
     self.assertTrue(len(game.get_move_logs()) == 1)
     self.assertTrue(game.get_move_logs()[0][1] is None)
     game.play_move(
         SpecificMove(RankedMoveType(MoveType.BOMB, Card.KING),
                      cards=Counter({Card.KING: 4})))
     self.assertTrue(game.get_current_position() == TurnPosition.SECOND)
     feature_matrix = players[1]._derive_features(game)
     self.assertTrue(feature_matrix[0][-6] == 1)
     self.assertTrue(feature_matrix[0][-2] == 1)
     self.assertTrue(feature_matrix[1][10] == 4)
     self.assertTrue(np.sum(feature_matrix) == 7)
Exemplo n.º 26
0
 def test_betting(self):
     players = [LearningPlayer('v1')] * 3
     game = LandlordGame(players=players)
     game.force_current_position(TurnPosition.SECOND)
     game.force_kitty([Card.LITTLE_JOKER, Card.BIG_JOKER, Card.THREE])
     game._make_bet_move(BetMove(2))
     game._make_bet_move(None)
     self.assertEqual(game.get_last_played(), BetMove(2))
     game._make_bet_move(BetMove(3))
     hands = {
         TurnPosition.FIRST: [Card.ACE] * 4 + [Card.KING] * 4 +
         [Card.QUEEN] * 4 + [Card.JACK] * 4 + [Card.THREE],
         TurnPosition.SECOND: [Card.TEN] * 4 + [Card.NINE] * 4 +
         [Card.EIGHT] * 4 + [Card.SEVEN] * 4 + [Card.THREE],
         TurnPosition.THIRD: [Card.FIVE] * 4 + [Card.FOUR] * 4 +
         [Card.SIX] * 4 + [Card.TWO] * 4 + [Card.THREE] * 1
     }
     game.force_setup(TurnPosition.FIRST, hands, 2)
     game.play_move(
         SpecificMove(RankedMoveType(MoveType.BOMB, Card.ACE),
                      cards=Counter({Card.ACE: 4})))
     feature_matrix = players[1]._derive_features(game)
     self.assertTrue(feature_matrix[0][-3] == 2)
     self.assertTrue(np.sum(players[1]._derive_features(game)) == 16)
Exemplo n.º 27
0
                             learning_rate=0.3)


if __name__ == "__main__":
    #players = [load_net('4_11_actualq4_model20'),
    #           load_net('4_11_actualq4_model20'),
    #           load_net('4_11_actualq4_model20')]

    players = [
        load_v2_net('4_13_stream2_model3_170', '../stream_models/'),
        load_v2_net('4_13_stream2_model2_194', '../stream_models/'),
        load_v2_net('4_13_stream2_model1_141', '../stream_models/')
    ]

    while True:
        game = LandlordGame(players=players)
        game.play_round(debug=True)
        if game.has_winners():
            break

    def printout_floats(array):
        print(', '.join(["%.3f" % val for val in array]))

    print('\n')
    for i in range(3):
        players[i].compute_future_q(game)
        print(players[i].get_name())
        printout_floats(players[i].get_estimated_qs())
        printout_floats(players[i]._record_state_q)
        print('\n')
Exemplo n.º 28
0
def human_game(player_names, perspective):
    perspective_hand = None
    players = []
    for player_name in player_names:
        if player_name == perspective:
            perspective_hand = manual_hand()
        player_is_perspective = (player_name == perspective)
        players.append(
            HumanPlayer(name=player_name,
                        reference_player=reference_player,
                        known_hand=player_is_perspective,
                        ai_before=player_is_perspective))

    game = LandlordGame(players, kitty_callback=manual_kitty)

    first_player = get_first_player(game)

    game.force_current_position(first_player)
    game.force_hand(perspective_position(game, perspective), perspective_hand)

    while not game.is_round_over():
        current_player = game.get_current_player()
        current_position = game.get_current_position()

        best_move, best_move_q = current_player.decide_best_move(game)

        print(current_player.get_name(), "(" + game.get_position_role_name(current_position) + ", " \
              + str(len(game.get_hand(current_position))) + "):", best_move, '(' + str(best_move_q) + ')')

        # play with known hand if it matches perspective
        game.play_move(best_move,
                       hand_known=current_player.get_name() == perspective)

        if type(game.get_last_played()) == KittyReveal:
            print(game.get_last_played())

    if game.has_winners():
        for winner in game.get_winners():
            print('WINNERS:', game.get_ai_players()[winner].get_name())