Exemplo n.º 1
0
	def classify(self, feature):
		tile = feature.GetFieldAsString(self.tileAttribute);

		print( "{0} Tile {1}".format(time.strftime("%d/%m/%Y"), tile) );

		filterTile="{0} = '{1}'".format(self.tileAttribute, tile);
		gridFile = self.basepath('INPUT', 'GRID', 'CLASSIFICATION_GRID.shp');

		mvcFile = self.getMvcFile(tile);

		trainningDataset = "DATASET_{0}".format(self.trainningDataset);
		trainningFilename = "{0}_TRAINNING.shp".format(tile);
		trainningFile = self.basepath('INPUT', 'TRAINNING', trainningDataset, trainningFilename);
		
		tempOutputFilename = "{0}_G{1}_{2}_MVC.tif".format(tile, self.gapfill.zfill(2), self.trainningDataset);
		tempOutputFile = self.temppath(tempOutputFilename);

		outputFilename = "{0}_CLASSIFICATION.tif".format(tile);
		outputFile = self.basepath('OUTPUT', self.runtimeDataset, 'CLASSIFICATION', outputFilename);

		outputStatsFilename = "{0}_STATS.csv".format(tile);
		outputStatsFile = self.basepath('OUTPUT', self.runtimeDataset, 'VALIDATION', outputStatsFilename);

		if not self.noClassify:
			print( " {0} Classify".format( time.strftime("%H:%M:%S") ) );
			resultClassification = garsect2.run2(mvcFile, trainningFile, self.trainningAttribute, self.mvcNullValue, tempOutputFile, outputStatsFile, 1, self.nTreeRandomForest, [1]);
			
			command = 'gdalwarp -co COMPRESS=lzw -co INTERLEAVE=BAND -co TILED=YES -ot Byte -q -dstnodata "{0}" -cwhere "{1}" -crop_to_cutline -overwrite -multi -cutline {2} {3} {4}'.format(self.mvcNullValue, filterTile, gridFile, tempOutputFile, outputFile);
			os.system(command);

			os.remove(tempOutputFile);
		
		return outputFile;
Exemplo n.º 2
0
	def classifyWithRandTrainning(self, feature):

		tile = feature.GetFieldAsString(self.tileAttribute);
		
		mvcFile = self.getMvcFile(tile)
		boundsGeometry = feature.geometry();
		nRandomPoints = self.nTreeRandomPoints;
		execNumber = int(self.trainningDataset[1:]);

		classificationResults = [ ];
		
		print( "{0} Tile {1}".format(time.strftime("%d/%m/%Y"), tile) );
		
		for i in range(execNumber):
			tmpFiles = [];
			rSuffix = "_R" + str(i) + '-' + str(execNumber);
			fileBaseName = tile + rSuffix;

			pctRandom = float(feature.GetFieldAsString(self.pctClassAttribute));

			print( " Execution {0}".format( str(i + 1) ) );

			filterTile="{0} = '{1}'".format(self.tileAttribute, tile);
			gridFile = self.basepath('INPUT', 'GRID', 'CLASSIFICATION_GRID.shp');

			
			validationDataset = "DATASET_{0}".format(self.validationDataset);
			validationFile = self.basepath('INPUT', 'VALIDATION', validationDataset, 'POLYGON_VALIDATION.shp');

			trainningFile = self.temppath(fileBaseName + ".shp");
			
			tmpFiles.append(self.temppath(fileBaseName + ".shp"));
			tmpFiles.append(self.temppath(fileBaseName + ".dbf"));
			tmpFiles.append(self.temppath(fileBaseName + ".shx"));
			tmpFiles.append(self.temppath(fileBaseName + ".prj"));
			
			try:
				os.remove(trainningFile);
			except:
				pass

			srs = osr.SpatialReference()
			srs.ImportFromEPSG(4326)

			trainningDs = self.geoDB['drivers']['shp'].CreateDataSource(trainningFile)
			trainningLayer = trainningDs.CreateLayer("point_out", srs, ogr.wkbPoint )
			trainningLayer.CreateField( ogr.FieldDefn(self.trainningAttribute, ogr.OFTString) )

			fixedTotalPoints = int(math.ceil(nRandomPoints * 0.25));
			pctTotalPoints = int(math.trunc(nRandomPoints * 0.75));

			nRandPointIn = int(math.trunc(pctTotalPoints * pctRandom)) + (fixedTotalPoints / 2)
			print( "  {0} {1} randomPoints".format( time.strftime("%H:%M:%S"), nRandPointIn ) );
			inTrainningPoints = randompoints.randomPointsIn(validationFile, nRandPointIn, boundsGeometry);

			nRandPointOut = int(math.ceil(pctTotalPoints * (1 - pctRandom))) + (fixedTotalPoints / 2)
			print( "  {0} {1} randomPointsOut".format( time.strftime("%H:%M:%S"), nRandPointOut ) );
			notInTrainningPoints = randompoints.randomPointsOut(validationFile, nRandPointOut, boundsGeometry);

			for point in notInTrainningPoints:
				feat = ogr.Feature(trainningLayer.GetLayerDefn())
				feat.SetGeometry(point['geometry']);
				feat.SetField(self.trainningAttribute, 1)
				trainningLayer.CreateFeature(feat)
			
			for point in inTrainningPoints:
				feat = ogr.Feature(trainningLayer.GetLayerDefn())
				feat.SetGeometry(point['geometry']);
				feat.SetField(self.trainningAttribute, 2)
				trainningLayer.CreateFeature(feat)
			
			trainningLayer.SyncToDisk();

			tempOutputFile = self.temppath(fileBaseName + "_noclip.tif");
			tmpFiles.append(tempOutputFile);

			classificationResult = self.temppath(fileBaseName + '.tif');
			classificationResults.append(classificationResult);
			
			print( "  {0} Classify".format( time.strftime("%H:%M:%S") ) );
			resultClassification = garsect2.run2(mvcFile, trainningFile, self.trainningAttribute, self.mvcNullValue, tempOutputFile, None, 1, self.nTreeRandomForest, [1]);
			
			command = 'gdalwarp -co COMPRESS=lzw -co INTERLEAVE=BAND -co TILED=YES -ot Int16 -q -dstnodata "{0}" -cwhere "{1}" -crop_to_cutline -overwrite -multi -cutline {2} {3} {4}'.format(self.mvcNullValue, filterTile, gridFile, tempOutputFile, classificationResult);
			os.system(command);

			print( "  {0} Remove temp files".format( time.strftime("%H:%M:%S") ) );
			for tmpFile in tmpFiles:
				os.remove(tmpFile);
		
		letters = [];
		params = '';
		for i,classificationResult in enumerate(classificationResults):
			letter = ascii_uppercase[i];
			params += " -{0} {1} ".format(letter, classificationResult);
			letters.append(letter);

		expr = "({0})/{1}".format( '+'.join(letters), len(letters) );
		outputFilename = "{0}_CLASSIFICATION.tif".format(tile);
		outputFile = self.basepath('OUTPUT', self.runtimeDataset, 'CLASSIFICATION', outputFilename);

		print( " {0} AVG classification calcultion".format( time.strftime("%H:%M:%S") ) );
		command = 'gdal_calc.py --co="COMPRESS=deflate" --co="INTERLEAVE=BAND" --co="TILED=YES" --NoDataValue=0 {0} --outfile={1} --calc="{2}"'.format(params, outputFile, expr)
		os.system(command);

		for classificationResult in classificationResults:
			print( " {0} Remove temp files".format( time.strftime("%H:%M:%S") ) );
			os.remove(classificationResult);

		return '';