Exemplo n.º 1
0
def xrf_resid(pars, peaks=None, mca=None, det=None, bgr=None,
              sig=None, filters=None, flyield=None, use_bgr=False,
              xray_en=30.0, emin=0.0, emax=30.0, **kws):

    sig_o = pars.sig_o.value
    sig_s = pars.sig_s.value
    sig_q = pars.sig_q.value
    model = mca.data * 0.0
    if use_bgr:
        model += mca.bgr
    for use, pcen, psig, pamp in peaks:
        amp = pamp.value
        cen = pcen.value
        sig = sig_o + cen * (sig_s + sig_q * cen)
        psig.value = sig
        if use: model += amp*gaussian(mca.energy, cen, sig)

    mca.model = model
    imin = index_of(mca.energy, emin)
    imax = index_of(mca.energy, emax)
    resid = (mca.data - model)
    # if det['use']:
    #     resid = resid / np.maximum(1.e-29, (1.0 - mca.det_atten))

    return resid[imin:imax]
Exemplo n.º 2
0
    def get_xranges(self, x):
        opts = self.read_form()
        dgroup = self.controller.get_group()
        en_eps = min(np.diff(dgroup.energy)) / 5.

        i1 = index_of(x, opts['emin'] + en_eps)
        i2 = index_of(x, opts['emax'] + en_eps) + 1
        return i1, i2
Exemplo n.º 3
0
    def get_xranges(self, x):
        opts = self.read_form()
        dgroup = self.controller.get_group()
        en_eps = min(np.diff(dgroup.energy)) / 5.

        i1 = index_of(x, opts['emin'] + en_eps)
        i2 = index_of(x, opts['emax'] + en_eps) + 1
        return i1, i2
Exemplo n.º 4
0
    def onPick2Timer(self, evt=None):
        """checks for 'Pick 2' events, and initiates 'Pick 2' guess
        for a model from the selected data range
        """
        try:
            plotframe = self.controller.get_display(win=1)
            curhist = plotframe.cursor_hist[:]
            plotframe.Raise()
        except:
            return

        if (time.time() - self.pick2_t0) > self.pick2_timeout:
            msg = self.pick2_group.pick2_msg.SetLabel(" ")
            plotframe.cursor_hist = []
            self.pick2_timer.Stop()
            return

        if len(curhist) < 2:
            self.pick2_group.pick2_msg.SetLabel("%i/2" % (len(curhist)))
            return

        self.pick2_group.pick2_msg.SetLabel("done.")
        self.pick2_timer.Stop()

        # guess param values
        xcur = (curhist[0][0], curhist[1][0])
        xmin, xmax = min(xcur), max(xcur)

        dgroup = getattr(self.larch.symtable, self.controller.groupname)
        x, y = dgroup.xdat, dgroup.ydat
        i0 = index_of(dgroup.xdat, xmin)
        i1 = index_of(dgroup.xdat, xmax)
        x, y = dgroup.xdat[i0:i1+1], dgroup.ydat[i0:i1+1]

        mod = self.pick2_group.mclass(prefix=self.pick2_group.prefix)
        parwids = self.pick2_group.parwids
        try:
            guesses = mod.guess(y, x=x)
        except:
            return

        for name, param in guesses.items():
            if name in parwids:
                parwids[name].value.SetValue(param.value)

        dgroup._tmp = mod.eval(guesses, x=dgroup.xdat)
        plotframe = self.controller.get_display(win=1)
        plotframe.cursor_hist = []
        plotframe.oplot(dgroup.xdat, dgroup._tmp)
        self.pick2erase_panel = plotframe.panel

        self.pick2erase_timer.Start(5000)
Exemplo n.º 5
0
    def onPick2Timer(self, evt=None):
        """checks for 'Pick 2' events, and initiates 'Pick 2' guess
        for a model from the selected data range
        """
        try:
            plotframe = self.controller.get_display(stacked=False)
            curhist = plotframe.cursor_hist[:]
            plotframe.Raise()
        except:
            return

        if (time.time() - self.pick2_t0) > self.pick2_timeout:
            msg = self.pick2_group.pick2_msg.SetLabel(" ")
            plotframe.cursor_hist = []
            self.pick2_timer.Stop()
            return

        if len(curhist) < 2:
            self.pick2_group.pick2_msg.SetLabel("%i/2" % (len(curhist)))
            return

        self.pick2_group.pick2_msg.SetLabel("done.")
        self.pick2_timer.Stop()

        # guess param values
        xcur = (curhist[0][0], curhist[1][0])
        xmin, xmax = min(xcur), max(xcur)

        dgroup = getattr(self.larch.symtable, self.controller.groupname)
        x, y = dgroup.x, dgroup.y
        i0 = index_of(dgroup.x, xmin)
        i1 = index_of(dgroup.x, xmax)
        x, y = dgroup.x[i0:i1 + 1], dgroup.y[i0:i1 + 1]

        mod = self.pick2_group.mclass(prefix=self.pick2_group.prefix)
        parwids = self.pick2_group.parwids
        try:
            guesses = mod.guess(y, x=x)
        except:
            return

        for name, param in guesses.items():
            if name in parwids:
                parwids[name].value.SetValue(param.value)

        dgroup._tmp = mod.eval(guesses, x=dgroup.x)
        plotframe = self.controller.get_display(stacked=False)
        plotframe.cursor_hist = []
        plotframe.oplot(dgroup.x, dgroup._tmp)
        self.pick2erase_panel = plotframe.panel

        self.pick2erase_timer.Start(5000)
Exemplo n.º 6
0
 def get_xranges(self, x):
     xmin, xmax = min(x), max(x)
     i1, i2 = 0, len(x)
     _xmin = self.xmin.GetValue()
     _xmax = self.xmax.GetValue()
     if _xmin > min(x):
         i1 = index_of(x, _xmin)
         xmin = x[i1]
     if _xmax < max(x):
         i2 = index_of(x, _xmax) + 1
         xmax = x[i2]
     xv1 = max(min(x), xmin - (xmax - xmin) / 5.0)
     xv2 = min(max(x), xmax + (xmax - xmin) / 5.0)
     return i1, i2, xv1, xv2
Exemplo n.º 7
0
    def on_cursor(self, event=None, side='left'):
        if event is None:
            return
        x, y = event.xdata, event.ydata
        if len(self.panel.fig.properties()['axes']) > 1:
            try:
                x, y = self.panel.axes.transData.inverted().transform(
                    (event.x, event.y))
            except:
                pass
        ix = x
        if self.mca is not None:
            ix = index_of(self.mca.energy, x)

        if side == 'right':
            self.xmarker_right = ix
        elif side == 'left':
            self.xmarker_left = ix

        if self.xmarker_left is not None and self.xmarker_right is not None:
            ix1, ix2 = self.xmarker_left, self.xmarker_right
            self.xmarker_left = min(ix1, ix2)
            self.xmarker_right = max(ix1, ix2)

        if side == 'left':
            self.energy_for_zoom = self.mca.energy[ix]
        self.update_status()
        self.draw()
Exemplo n.º 8
0
    def get_plot_arrays(self, dgroup):
        form = self.read_form()

        lab = plotlabels.norm
        if dgroup is None:
            return

        dgroup.plot_y2label = None
        dgroup.plot_xlabel = plotlabels.energy
        dgroup.plot_yarrays = [('norm', PLOTOPTS_1, lab)]

        if dgroup.datatype != 'xas':
            pchoice = PlotOne_Choices_nonxas[
                self.plotone_op.GetStringSelection()]
            dgroup.plot_xlabel = 'x'
            dgroup.plot_ylabel = 'y'
            dgroup.plot_yarrays = [('ydat', PLOTOPTS_1, 'ydat')]
            dgroup.dmude = np.gradient(dgroup.ydat) / np.gradient(dgroup.xdat)
            if pchoice == 'dmude':
                dgroup.plot_ylabel = 'dy/dx'
                dgroup.plot_yarrays = [('dmude', PLOTOPTS_1, 'dy/dx')]
            elif pchoice == 'norm+deriv':
                lab = plotlabels.norm
                dgroup.plot_y2label = 'dy/dx'
                dgroup.plot_yarrays = [('ydat', PLOTOPTS_1, 'y'),
                                       ('dmude', PLOTOPTS_D, 'dy/dx')]
            return

        pchoice = PlotOne_Choices[self.plotone_op.GetStringSelection()]
        if pchoice in ('mu', 'norm', 'flat', 'dmude'):
            lab = getattr(plotlabels, pchoice)
            dgroup.plot_yarrays = [(pchoice, PLOTOPTS_1, lab)]

        elif pchoice == 'prelines':
            dgroup.plot_yarrays = [('mu', PLOTOPTS_1, plotlabels.mu),
                                   ('pre_edge', PLOTOPTS_2, 'pre edge'),
                                   ('post_edge', PLOTOPTS_2, 'post edge')]
        elif pchoice == 'preedge':
            dgroup.pre_edge_sub = dgroup.norm * dgroup.edge_step
            dgroup.plot_yarrays = [('pre_edge_sub', PLOTOPTS_1,
                                    r'pre-edge subtracted $\mu$')]
            lab = r'pre-edge subtracted $\mu$'

        elif pchoice == 'norm+deriv':
            lab = plotlabels.norm
            lab2 = plotlabels.dmude
            dgroup.plot_yarrays = [('norm', PLOTOPTS_1, lab),
                                   ('dmude', PLOTOPTS_D, lab2)]
            dgroup.plot_y2label = lab2

        dgroup.plot_ylabel = lab
        y4e0 = dgroup.ydat = getattr(dgroup, dgroup.plot_yarrays[0][0],
                                     dgroup.mu)
        dgroup.plot_extras = []
        if form['show_e0']:
            ie0 = index_of(dgroup.energy, dgroup.e0)
            dgroup.plot_extras.append(('marker', dgroup.e0, y4e0[ie0], {}))
Exemplo n.º 9
0
def extend_plotrange(x, y, xmin=None, xmax=None, extend=0.05):
    """return plot limits to extend a plot range for x, y pairs"""
    xeps = min(diff(x)) / 5.
    if xmin is None:
        xmin = min(x)
    if xmax is None:
        xmax = max(x)
    i0 = index_of(x, xmin + xeps)
    i1 = index_of(x, xmax + xeps) + 1

    xspan = x[i0:i1]
    xrange = max(xspan) - min(xspan)
    yspan = y[i0:i1]
    yrange = max(yspan) - min(yspan)

    return  (min(xspan) - extend * xrange,
             max(xspan) + extend * xrange,
             min(yspan) - extend * yrange,
             max(yspan) + extend * yrange)
Exemplo n.º 10
0
    def fit_spectrum(self, energy, counts, energy_min=None,
                     energy_max=None):

        work_energy = 1.0*energy
        work_counts = 1.0*counts
        floor = 1.e-12*np.percentile(counts, [99])[0]
        work_counts[np.where(counts<floor)] = floor

        if max(energy) < 250.0: # input energies are in keV
            work_energy = 1000.0 * energy

        self.set_fit_weight(work_energy, work_counts)

        imin, imax = 0, len(counts)
        if energy_min is None:
            energy_min = self.energy_min
        if energy_min is not None:
            imin = index_of(work_energy, energy_min)
        if energy_max is None:
            energy_max = self.energy_max
        if energy_max is not None:
            imax = index_of(work_energy, energy_max)

        self.fit_weight[:imin-1] = 0.0
        self.fit_weight[imax+1:] = 0.0
        self.fit_iter = 0

        userkws = dict(data=work_counts,
                       index=np.arange(len(counts)))
        kws = dict(method='leastsq', maxfev=4000, gtol=self.fit_toler,
                   ftol=self.fit_toler, xtol=self.fit_toler, epsfcn=1.e-5)

        self.result = minimize(self.__resid, self.params, kws=userkws, **kws)
        self.fit_report = fit_report(self.result, min_correl=0.5)

        self.best_fit = self.calc_spectrum(energy, params=self.result.params)

        # calculate transfer matrix for linear analysis using this model
        tmat= []
        for key, val in self.comps.items():
            tmat.append(val / self.eigenvalues[key])
        self.transfer_matrix = np.array(tmat)
Exemplo n.º 11
0
def xrf_resid(pars,
              peaks=None,
              mca=None,
              det=None,
              bgr=None,
              sig=None,
              filters=None,
              flyield=None,
              use_bgr=False,
              xray_en=30.0,
              emin=0.0,
              emax=30.0,
              **kws):

    sig_o = pars['sig_o'].value
    sig_s = pars['sig_s'].value
    sig_q = pars['sig_q'].value
    model = mca.data * 0.0
    if use_bgr:
        model += mca.bgr
    for use, pcen, psig, pamp in peaks:
        amp = pars[pamp.name].value
        cen = pars[pcen.name].value
        sig = pars[psig.name].value
        if use:
            model += gaussian(mca.energy, amplitude=amp, center=cen, sigma=sig)

    mca.model = model
    imin = index_of(mca.energy, emin)
    imax = index_of(mca.energy, emax)
    resid = (mca.data - model)

    # if det['use']:
    #     resid = resid / np.maximum(1.e-29, (1.0 - mca.det_atten))

    return resid[imin:imax]
Exemplo n.º 12
0
def plot_prepeaks_baseline(dgroup, subtract_baseline=False, show_fitrange=True,
                           show_peakrange=True, win=1, _larch=None, **kws):
    """Plot pre-edge peak baseline fit, as from `pre_edge_baseline` or XAS Viewer

    dgroup must have a 'prepeaks' attribute
    """
    if not hasattr(dgroup, 'prepeaks'):
        raise ValueError('Group needs prepeaks')
    #endif
    ppeak = dgroup.prepeaks

    px0, px1, py0, py1 = extend_plotrange(dgroup.xdat, dgroup.ydat,
                                          xmin=ppeak.emin, xmax=ppeak.emax)
    title = "pre_edge baesline\n %s" % dgroup.filename

    popts = dict(xmin=px0, xmax=px1, ymin=py0, ymax=py1, title=title,
                 xlabel='Energy (eV)', ylabel='mu', delay_draw=True,
                 show_legend=True, style='solid', linewidth=3,
                 label='data', new=True,
                 marker='None', markersize=4, win=win, _larch=_larch)
    popts.update(kws)

    ydat = dgroup.ydat
    xdat = dgroup.xdat
    if subtract_baseline:
        xdat = ppeak.energy
        ydat = ppeak.baseline
        popts['label'] = 'baseline subtracted peaks'
        _plot(xdat, ydat, **popts)
    else:
        _plot(xdat, ydat, **popts)
        popts['new'] = False
        popts['label'] = 'baseline'
        _oplot(ppeak.energy, ppeak.baseline, **popts)

    popts = dict(win=win, _larch=_larch, delay_draw=True,
                 label='_nolegend_')
    if show_fitrange:
        for x in (ppeak.emin, ppeak.emax):
            _plot_axvline(x, color='#DDDDCC', **popts)
            _plot_axvline(ppeak.centroid, color='#EECCCC', **popts)

    if show_peakrange:
        for x in (ppeak.elo, ppeak.ehi):
            y = ydat[index_of(xdat, x)]
            _plot_marker(x, y, color='#222255', marker='o', size=8, **popts)
    redraw(win=win, show_legend=True, _larch=_larch)
Exemplo n.º 13
0
    def guess_starting_values(self, y, x):
        """could probably improve this"""
        ymax, ymin = max(y), min(y)
        yex = ymax
        self.set_initval(self.params.amplitude, 5.*(ymax-ymin))
        if self.negative:
            yex = ymin
            self.params.amplitude.value = -(ymax - ymin)*5.0
        iyex = index_nearest(y, yex)
        self.set_initval(self.params.center, x[iyex])

        halfy = yex /2.0
        ihalfy = index_of(y, halfy)
        sig0 = abs(x[iyex] - x[ihalfy])
        sig1 = 0.15*(max(x) - min(x))
        if sig1 < sig0 : sig0 = sig1
        self.set_initval(self.params.sigma,  sig0)
        bkg0 = ymin
        if self.negative: bkg0 = ymax
        self.set_init_bkg(bkg0)
Exemplo n.º 14
0
def mback_norm(energy, mu=None, group=None, z=None, edge='K', e0=None,
               pre1=None, pre2=-50, norm1=100, norm2=None, nnorm=1, nvict=1,
               _larch=None):
    """
    simplified version of MBACK to Match mu(E) data for tabulated f''(E)
    for normalization

    Arguments:
      energy, mu:  arrays of energy and mu(E)
      group:       output group (and input group for e0)
      z:           Z number of absorber
      e0:          edge energy
      pre1:        low E range (relative to E0) for pre-edge fit
      pre2:        high E range (relative to E0) for pre-edge fit
      norm1:       low E range (relative to E0) for post-edge fit
      norm2:       high E range (relative to E0) for post-edge fit
      nnorm:       degree of polynomial (ie, nnorm+1 coefficients will be
                   found) for post-edge normalization curve fit to the
                   scaled f2. Default=1 (linear)

    Returns:
      group.norm_poly:     normalized mu(E) from pre_edge()
      group.norm:          normalized mu(E) from this method
      group.mback_mu:      tabulated f2 scaled and pre_edge added to match mu(E)
      group.mback_params:  Group of parameters for the minimization

    References:
      * MBACK (Weng, Waldo, Penner-Hahn): http://dx.doi.org/10.1086/303711
      * Chantler: http://dx.doi.org/10.1063/1.555974
    """
    ### implement the First Argument Group convention
    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='mback')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    group = set_xafsGroup(group, _larch=_larch)
    group.norm_poly = group.norm*1.0

    if z is not None:              # need to run find_e0:
        e0_nominal = xray_edge(z, edge)[0]
    if e0 is None:
        e0 = getattr(group, 'e0', None)
        if e0 is None:
            find_e0(energy, mu, group=group)
            e0 = group.e0

    atsym = None
    if z is None or z < 2:
        atsym, edge = guess_edge(group.e0, _larch=_larch)
        z = atomic_number(atsym)
    if atsym is None and z is not None:
        atsym = atomic_symbol(z)

    if getattr(group, 'pre_edge_details', None) is None:  # pre_edge never run
        preedge(energy, mu, pre1=pre1, pre2=pre2, nvict=nvict,
                norm1=norm1, norm2=norm2, e0=e0, nnorm=nnorm)

    mu_pre = mu - group.pre_edge
    f2 = f2_chantler(z, energy)

    weights = np.ones(len(energy))*1.0

    if norm2 is None:
        norm2 = max(energy) - e0

    if norm2 < 0:
        norm2 = max(energy) - e0  - norm2

    # avoid l2 and higher edges
    if edge.lower().startswith('l'):
        if edge.lower() == 'l3':
            e_l2 = xray_edge(z, 'L2').edge
            norm2 = min(norm2,  e_l2-e0)
        elif edge.lower() == 'l2':
            e_l2 = xray_edge(z, 'L1').edge
            norm2 = min(norm2,  e_l1-e0)

    ipre2 = index_of(energy, e0+pre2)
    inor1 = index_of(energy, e0+norm1)
    inor2 = index_of(energy, e0+norm2) + 1


    weights[ipre2:] = 0.0
    weights[inor1:inor2] = np.linspace(0.1, 1.0, inor2-inor1)

    params = Parameters()
    params.add(name='slope',   value=0.0,    vary=True)
    params.add(name='offset',  value=-f2[0], vary=True)
    params.add(name='scale',   value=f2[-1], vary=True)

    out = minimize(f2norm, params, method='leastsq',
                   gtol=1.e-5, ftol=1.e-5, xtol=1.e-5, epsfcn=1.e-5,
                   kws = dict(en=energy, mu=mu_pre, f2=f2, weights=weights))

    p = out.params.valuesdict()

    model = (p['offset'] + p['slope']*energy + f2) * p['scale']

    group.mback_mu = model + group.pre_edge

    pre_f2 = preedge(energy, model, nnorm=nnorm, nvict=nvict, e0=e0,
                     pre1=pre1, pre2=pre2, norm1=norm1, norm2=norm2)

    step_new = pre_f2['edge_step']

    group.edge_step_poly  = group.edge_step
    group.edge_step_mback = step_new
    group.norm_mback = mu_pre / step_new


    group.mback_params = Group(e0=e0, pre1=pre1, pre2=pre2, norm1=norm1,
                               norm2=norm2, nnorm=nnorm, fit_params=p,
                               fit_weights=weights, model=model, f2=f2,
                               pre_f2=pre_f2, atsym=atsym, edge=edge)

    if (abs(step_new - group.edge_step)/(1.e-13+group.edge_step)) > 0.75:
        print("Warning: mback edge step failed....")
    else:
        group.edge_step = step_new
        group.norm       = group.norm_mback
Exemplo n.º 15
0
def plot_mu(dgroup,
            show_norm=False,
            show_deriv=False,
            show_pre=False,
            show_post=False,
            show_e0=False,
            with_deriv=False,
            emin=None,
            emax=None,
            label='mu',
            new=True,
            title=None,
            win=1,
            _larch=None):
    """
    plot_mu(dgroup, norm=False, deriv=False, show_pre=False, show_post=False,
             show_e0=False, show_deriv=False, emin=None, emax=None, label=None,
             new=True, win=1)

    Plot mu(E) for an XAFS data group in various forms

    Arguments
    ----------
     dgroup     group of XAFS data after pre_edge() results (see Note 1)
     show_norm  bool whether to show normalized data [False]
     show_deriv bool whether to show derivative of XAFS data [False]
     show_pre   bool whether to show pre-edge curve [False]
     show_post  bool whether to show post-edge curve [False]
     show_e0    bool whether to show E0 [False]
     with_deriv bool whether to show deriv together with mu [False]
     emin       min energy to show, relative to E0 [None, start of data]
     emax       max energy to show, relative to E0 [None, end of data]
     label      string for label [None:  'mu', `dmu/dE', or 'mu norm']
     title      string for plot titlel [None, may use filename if available]
     new        bool whether to start a new plot [True]
     win        integer plot window to use [1]

    Notes
    -----
     1. The input data group must have the following attributes:
         energy, mu, norm, e0, pre_edge, edge_step
    """
    if hasattr(dgroup, 'mu'):
        mu = dgroup.mu
    elif hasattr(dgroup, 'mutrans'):
        mu = dgroup.mutrans
    elif hasattr(dgroup, 'mufluor'):
        mu = dgroup.mufluor
    else:
        raise ValueError("XAFS data group has no array for mu")
    #endif
    ylabel = plotlabels.mu
    if label is None:
        label = 'mu'
    #endif
    if show_deriv:
        mu = gradient(mu) / gradient(dgroup.energy)
        ylabel = plotlabels.dmude
        dlabel = '%s (deriv)' % label
    elif show_norm:
        mu = dgroup.norm
        ylabel = "%s (norm)" % ylabel
        dlabel = "%s (norm)" % label
    #endif
    xmin, xmax = None, None
    if emin is not None: xmin = dgroup.e0 + emin
    if emax is not None: xmax = dgroup.e0 + emax

    title = _get_title(dgroup, title=title)

    opts = dict(win=win,
                show_legend=True,
                linewidth=3,
                title=title,
                xmin=xmin,
                xmax=xmax,
                _larch=_larch)

    _plot(dgroup.energy,
          mu,
          xlabel=plotlabels.energy,
          ylabel=ylabel,
          label=label,
          zorder=20,
          new=new,
          **opts)

    if with_deriv:
        dmu = gradient(mu) / gradient(dgroup.energy)
        _plot(dgroup.energy,
              dmu,
              ylabel=plotlabels.dmude,
              label='%s (deriv)' % label,
              zorder=18,
              side='right',
              **opts)
    #endif

    if (not show_norm and not show_deriv):
        if show_pre:
            _plot(dgroup.energy,
                  dgroup.pre_edge,
                  label='pre_edge',
                  zorder=18,
                  **opts)
        #endif
        if show_post:
            _plot(dgroup.energy,
                  dgroup.post_edge,
                  label='post_edge',
                  zorder=18,
                  **opts)
            if show_pre:
                i = index_of(dgroup.energy, dgroup.e0)
                ypre = dgroup.pre_edge[i]
                ypost = dgroup.post_edge[i]
                _plot_arrow(dgroup.e0,
                            ypre,
                            dgroup.e0,
                            ypost,
                            color=plotlabels.e0color,
                            width=0.25,
                            head_width=0,
                            zorder=3,
                            win=win,
                            _larch=_larch)
            #endif
        #endif
    #endif
    if show_e0:
        _plot_axvline(dgroup.e0,
                      zorder=2,
                      size=3,
                      label='E0',
                      color=plotlabels.e0color,
                      win=win,
                      _larch=_larch)
        _getDisplay(win=win, _larch=_larch).panel.conf.draw_legend()
Exemplo n.º 16
0
    def process(self, gname,  **kws):
        """ handle process (pre-edge/normalize) XAS data from XAS form, overwriting
        larch group 'x' and 'y' attributes to be plotted
        """
        dgroup = self.controller.get_group(gname)
        proc_opts = {}

        proc_opts['xshift'] = self.xshift.GetValue()
        proc_opts['yshift'] = self.yshift.GetValue()
        proc_opts['xscale'] = self.xscale.GetValue()
        proc_opts['yscale'] = self.yscale.GetValue()
        proc_opts['smooth_op'] = self.smooth_op.GetStringSelection()
        proc_opts['smooth_c0'] = int(self.smooth_c0.GetValue())
        proc_opts['smooth_c1'] = int(self.smooth_c1.GetValue())
        proc_opts['smooth_sig'] = float(self.smooth_sig.GetValue())
        proc_opts['smooth_conv'] = self.smooth_conv.GetStringSelection()

        self.xaspanel.Enable(dgroup.datatype.startswith('xas'))
        if dgroup.datatype.startswith('xas'):
            proc_opts['datatype'] = 'xas'
            proc_opts['e0'] = self.xas_e0.GetValue()
            proc_opts['edge_step'] = self.xas_step.GetValue()
            proc_opts['pre1']  = self.xas_pre1.GetValue()
            proc_opts['pre2']  = self.xas_pre2.GetValue()
            proc_opts['norm1'] = self.xas_nor1.GetValue()
            proc_opts['norm2'] = self.xas_nor2.GetValue()
            proc_opts['nvict'] = self.xas_vict.GetSelection()
            proc_opts['nnorm'] = self.xas_nnor.GetSelection()

            proc_opts['auto_e0'] = self.xas_autoe0.IsChecked()
            proc_opts['show_e0'] = self.xas_showe0.IsChecked()
            proc_opts['auto_step'] = self.xas_autostep.IsChecked()
            proc_opts['nnorm'] = int(self.xas_nnor.GetSelection())
            proc_opts['nvict'] = int(self.xas_vict.GetSelection())
            proc_opts['xas_op'] = self.xas_op.GetStringSelection()

        self.controller.process(dgroup, proc_opts=proc_opts)

        if dgroup.datatype.startswith('xas'):

            if self.xas_autoe0.IsChecked():
                self.xas_e0.SetValue(dgroup.proc_opts['e0'], act=False)
            if self.xas_autostep.IsChecked():
                self.xas_step.SetValue(dgroup.proc_opts['edge_step'], act=False)

            self.xas_pre1.SetValue(dgroup.proc_opts['pre1'])
            self.xas_pre2.SetValue(dgroup.proc_opts['pre2'])
            self.xas_nor1.SetValue(dgroup.proc_opts['norm1'])
            self.xas_nor2.SetValue(dgroup.proc_opts['norm2'])

            dgroup.orig_ylabel = dgroup.plot_ylabel
            dgroup.plot_ylabel = '$\mu$'
            dgroup.plot_y2label = None
            dgroup.plot_xlabel = '$E \,\mathrm{(eV)}$'
            dgroup.plot_yarrays = [(dgroup.mu, PLOTOPTS_1, dgroup.plot_ylabel)]
            y4e0 = dgroup.mu

            out = self.xas_op.GetStringSelection().lower() # raw, pre, norm, flat
            if out.startswith('raw data + pre'):
                dgroup.plot_yarrays = [(dgroup.mu,        PLOTOPTS_1, '$\mu$'),
                                       (dgroup.pre_edge,  PLOTOPTS_2, 'pre edge'),
                                       (dgroup.post_edge, PLOTOPTS_2, 'post edge')]
            elif out.startswith('pre'):
                dgroup.pre_edge_sub = dgroup.norm * dgroup.edge_step
                dgroup.plot_yarrays = [(dgroup.pre_edge_sub, PLOTOPTS_1,
                                        'pre-edge subtracted $\mu$')]
                y4e0 = dgroup.pre_edge_sub
                dgroup.plot_ylabel = 'pre-edge subtracted $\mu$'
            elif 'norm' in out and 'deriv' in out:
                dgroup.plot_yarrays = [(dgroup.norm, PLOTOPTS_1, 'normalized $\mu$'),
                                       (dgroup.dmude, PLOTOPTS_D, '$d\mu/dE$')]
                y4e0 = dgroup.norm
                dgroup.plot_ylabel = 'normalized $\mu$'
                dgroup.plot_y2label = '$d\mu/dE$'
                dgroup.y = dgroup.norm

            elif out.startswith('norm'):
                dgroup.plot_yarrays = [(dgroup.norm, PLOTOPTS_1, 'normalized $\mu$')]
                y4e0 = dgroup.norm
                dgroup.plot_ylabel = 'normalized $\mu$'
                dgroup.y = dgroup.norm

            elif out.startswith('deriv'):
                dgroup.plot_yarrays = [(dgroup.dmude, PLOTOPTS_1, '$d\mu/dE$')]
                y4e0 = dgroup.dmude
                dgroup.plot_ylabel = '$d\mu/dE$'
                dgroup.y = dgroup.dmude

            dgroup.plot_ymarkers = []
            if self.xas_showe0.IsChecked():
                ie0 = index_of(dgroup.xdat, dgroup.e0)
                dgroup.plot_ymarkers = [(dgroup.e0, y4e0[ie0], {'label': '_nolegend_'})]
Exemplo n.º 17
0
def plot_mu(dgroup, show_norm=False, show_deriv=False,
            show_pre=False, show_post=False, show_e0=False, with_deriv=False,
            emin=None, emax=None, label='mu', new=True, delay_draw=False,
            offset=0, title=None, win=1, _larch=None):
    """
    plot_mu(dgroup, norm=False, deriv=False, show_pre=False, show_post=False,
             show_e0=False, show_deriv=False, emin=None, emax=None, label=None,
             new=True, win=1)

    Plot mu(E) for an XAFS data group in various forms

    Arguments
    ----------
     dgroup     group of XAFS data after pre_edge() results (see Note 1)
     show_norm  bool whether to show normalized data [False]
     show_deriv bool whether to show derivative of XAFS data [False]
     show_pre   bool whether to show pre-edge curve [False]
     show_post  bool whether to show post-edge curve [False]
     show_e0    bool whether to show E0 [False]
     with_deriv bool whether to show deriv together with mu [False]
     emin       min energy to show, relative to E0 [None, start of data]
     emax       max energy to show, relative to E0 [None, end of data]
     label      string for label [None:  'mu', `dmu/dE', or 'mu norm']
     title      string for plot titlel [None, may use filename if available]
     new        bool whether to start a new plot [True]
     delay_draw bool whether to delay draw until more traces are added [False]
     offset      vertical offset to use for y-array [0]
     win        integer plot window to use [1]

    Notes
    -----
     1. The input data group must have the following attributes:
         energy, mu, norm, e0, pre_edge, edge_step
    """
    if hasattr(dgroup, 'mu'):
        mu = dgroup.mu
    elif  hasattr(dgroup, 'mutrans'):
        mu = dgroup.mutrans
    elif  hasattr(dgroup, 'mufluor'):
        mu = dgroup.mufluor
    else:
        raise ValueError("XAFS data group has no array for mu")
    #endif
    ylabel = plotlabels.mu
    if label is None:
        label = 'mu'
    #endif
    if show_deriv:
        mu = gradient(mu)/gradient(dgroup.energy)
        ylabel = plotlabels.dmude
        dlabel = '%s (deriv)' % label
    elif show_norm:
        mu = dgroup.norm
        ylabel = "%s (norm)" % ylabel
        dlabel = "%s (norm)" % label
    #endif
    xmin, xmax = None, None
    if emin is not None: xmin = dgroup.e0 + emin
    if emax is not None: xmax = dgroup.e0 + emax

    title = _get_title(dgroup, title=title)

    opts = dict(win=win, show_legend=True, linewidth=3,
                title=title, xmin=xmin, xmax=xmax,
                delay_draw=True, _larch=_larch)

    _plot(dgroup.energy, mu+offset, xlabel=plotlabels.energy, ylabel=ylabel,
          label=label, zorder=20, new=new, **opts)

    if with_deriv:
        dmu = gradient(mu)/gradient(dgroup.energy)
        _plot(dgroup.energy, dmu+offset, ylabel=plotlabels.dmude,
              label='%s (deriv)' % label, zorder=18, side='right', **opts)
    #endif
    if (not show_norm and not show_deriv):
        if show_pre:
            _plot(dgroup.energy, dgroup.pre_edge+offset, label='pre_edge',
                  zorder=18, **opts)
        #endif
        if show_post:
            _plot(dgroup.energy, dgroup.post_edge+offset, label='post_edge',
                  zorder=18, **opts)
            if show_pre:
                i = index_of(dgroup.energy, dgroup.e0)
                ypre = dgroup.pre_edge[i]
                ypost = dgroup.post_edge[i]
                _plot_arrow(dgroup.e0, ypre, dgroup.e0+offset, ypost,
                            color=plotlabels.e0color, width=0.25,
                            head_width=0, zorder=3, win=win, _larch=_larch)
            #endif
        #endif
    #endif
    if show_e0:
        _plot_axvline(dgroup.e0, zorder=2, size=3,
                      label='E0', color=plotlabels.e0color, win=win,
                      _larch=_larch)
        _getDisplay(win=win, _larch=_larch).panel.conf.draw_legend()
    #endif
    redraw(win=win, _larch=_larch)
Exemplo n.º 18
0
def get_xlims(x, xmin, xmax):
    xeps = min(np.diff(x))/ 5.
    i1 = index_of(x, xmin + xeps)
    i2 = index_of(x, xmax + xeps) + 1
    return i1, i2
Exemplo n.º 19
0
def mback(energy,
          mu=None,
          group=None,
          order=3,
          z=None,
          edge='K',
          e0=None,
          emin=None,
          emax=None,
          whiteline=None,
          leexiang=False,
          tables='chantler',
          fit_erfc=False,
          return_f1=False,
          _larch=None):
    """
    Match mu(E) data for tabulated f''(E) using the MBACK algorithm and,
    optionally, the Lee & Xiang extension

    Arguments:
      energy, mu:    arrays of energy and mu(E)
      order:         order of polynomial [3]
      group:         output group (and input group for e0)
      z:             Z number of absorber
      edge:          absorption edge (K, L3)
      e0:            edge energy
      emin:          beginning energy for fit
      emax:          ending energy for fit
      whiteline:     exclusion zone around white lines
      leexiang:      flag to use the Lee & Xiang extension
      tables:        'chantler' (default) or 'cl'
      fit_erfc:      True to float parameters of error function
      return_f1:     True to put the f1 array in the group

    Returns:
      group.f2:      tabulated f2(E)
      group.f1:      tabulated f1(E) (if return_f1 is True)
      group.fpp:     matched data
      group.mback_params:  Group of parameters for the minimization

    References:
      * MBACK (Weng, Waldo, Penner-Hahn): http://dx.doi.org/10.1086/303711
      * Lee and Xiang: http://dx.doi.org/10.1088/0004-637X/702/2/970
      * Cromer-Liberman: http://dx.doi.org/10.1063/1.1674266
      * Chantler: http://dx.doi.org/10.1063/1.555974
    """
    order = int(order)
    if order < 1: order = 1  # set order of polynomial
    if order > MAXORDER: order = MAXORDER

    ### implement the First Argument Group convention
    energy, mu, group = parse_group_args(energy,
                                         members=('energy', 'mu'),
                                         defaults=(mu, ),
                                         group=group,
                                         fcn_name='mback')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    group = set_xafsGroup(group, _larch=_larch)

    if e0 is None:  # need to run find_e0:
        e0 = xray_edge(z, edge, _larch=_larch)[0]
    if e0 is None:
        e0 = group.e0
    if e0 is None:
        find_e0(energy, mu, group=group)

    ### theta is an array used to exclude the regions <emin, >emax, and
    ### around white lines, theta=0.0 in excluded regions, theta=1.0 elsewhere
    (i1, i2) = (0, len(energy) - 1)
    if emin is not None: i1 = index_of(energy, emin)
    if emax is not None: i2 = index_of(energy, emax)
    theta = np.ones(len(energy))  # default: 1 throughout
    theta[0:i1] = 0
    theta[i2:-1] = 0
    if whiteline:
        pre = 1.0 * (energy < e0)
        post = 1.0 * (energy > e0 + float(whiteline))
        theta = theta * (pre + post)
    if edge.lower().startswith('l'):
        l2 = xray_edge(z, 'L2', _larch=_larch)[0]
        l2_pre = 1.0 * (energy < l2)
        l2_post = 1.0 * (energy > l2 + float(whiteline))
        theta = theta * (l2_pre + l2_post)

    ## this is used to weight the pre- and post-edge differently as
    ## defined in the MBACK paper
    weight1 = 1 * (energy < e0)
    weight2 = 1 * (energy > e0)
    weight = np.sqrt(sum(weight1)) * weight1 + np.sqrt(sum(weight2)) * weight2
    ## get the f'' function from CL or Chantler
    if tables.lower() == 'chantler':
        f1 = f1_chantler(z, energy, _larch=_larch)
        f2 = f2_chantler(z, energy, _larch=_larch)
    else:
        (f1, f2) = f1f2(z, energy, edge=edge, _larch=_larch)
    group.f2 = f2
    if return_f1:
        group.f1 = f1

    em = xray_line(z, edge.upper(), _larch=_larch)[0]  # erfc centroid

    params = Parameters()
    params.add(name='s', value=1, vary=True)  # scale of data
    params.add(name='xi', value=50, vary=fit_erfc, min=0)  # width of erfc
    params.add(name='a', value=0, vary=False)  # amplitude of erfc
    if fit_erfc:
        params['a'].value = 1
        params['a'].vary = True

    for i in range(order):  # polynomial coefficients
        params.add(name='c%d' % i, value=0, vary=True)

    out = minimize(match_f2,
                   params,
                   method='leastsq',
                   gtol=1.e-5,
                   ftol=1.e-5,
                   xtol=1.e-5,
                   epsfcn=1.e-5,
                   kws=dict(en=energy,
                            mu=mu,
                            f2=f2,
                            e0=e0,
                            em=em,
                            order=order,
                            weight=weight,
                            theta=theta,
                            leexiang=leexiang))

    opars = out.params.valuesdict()
    eoff = energy - e0

    norm_function = opars['a'] * erfc(
        (energy - em) / opars['xi']) + opars['c0']
    for i in range(order):
        j = i + 1
        attr = 'c%d' % j
        if attr in opars:
            norm_function += opars[attr] * eoff**j

    group.e0 = e0
    group.fpp = opars['s'] * mu - norm_function
    group.mback_params = opars
    tmp = Group(energy=energy, mu=group.f2 - norm_function, e0=0)

    # calculate edge step from f2 + norm_function: should be very smooth
    pre_f2 = preedge(energy, group.f2 + norm_function, e0=e0, nnorm=2, nvict=0)
    group.edge_step = pre_f2['edge_step'] / opars['s']

    pre_fpp = preedge(energy, mu, e0=e0, nnorm=2, nvict=0)

    group.norm = (mu - pre_fpp['pre_edge']) / group.edge_step
Exemplo n.º 20
0
    def onPlot(self, evt=None):
        plot_choice = self.plot_choice.GetStringSelection()

        opts = self.read_form()
        dgroup = self.controller.get_group()

        ppeaks = getattr(dgroup, 'prepeaks', None)
        if ppeaks is None:
            return

        i1, i2 = self.get_xranges(dgroup.xdat)
        # i2 = len(ppeaks.baseline) + i1

        if len(dgroup.yfit) > len(ppeaks.baseline):
            i2 = i1 + len(ppeaks.baseline)
        # print(" Indexes: ", i1, i2, i2-i1, len(dgroup.yfit), len(ppeaks.baseline))

        xdat = 1.0*dgroup.energy
        ydat = 1.0*dgroup.ydat
        yfit = 1.0*dgroup.ydat
        baseline = 1.0*dgroup.ydat
        yfit[i1:i2] = dgroup.yfit[:i2-i1]
        baseline[i1:i2] = ppeaks.baseline[:i2-i1]


        if opts['plot_sub_bline']:
            ydat = ydat - baseline
            if plot_choice in (PLOT_FIT, PLOT_RESID):
                yfit = yfit - baseline
        if plot_choice == PLOT_RESID:
            resid = ydat - yfit

        _xs = dgroup.energy[i1:i2]
        xrange = max(_xs) - min(_xs)
        pxmin = min(_xs) - 0.05 * xrange
        pxmax = max(_xs) + 0.05 * xrange

        jmin = index_of(dgroup.energy, pxmin)
        jmax = index_of(dgroup.energy, pxmax) + 1

        _ys = ydat[jmin:jmax]
        yrange = max(_ys) - min(_ys)
        pymin = min(_ys) - 0.05 * yrange
        pymax = max(_ys) + 0.05 * yrange

        title = ' pre-edge fit'
        if plot_choice == PLOT_BASELINE:
            title = ' pre-edge baseline'
            if opts['plot_sub_bline']:
                title = ' pre-edge peaks'

        array_desc = self.array_choice.GetStringSelection()

        plotopts = {'xmin': pxmin, 'xmax': pxmax,
                    'ymin': pymin, 'ymax': pymax,
                    'title': '%s: %s' % (opts['gname'], title),
                    'xlabel': 'Energy (eV)',
                    'ylabel': '%s $\mu$' % opts['array_desc'],
                    'label': '%s $\mu$' % opts['array_desc'],
                    'delay_draw': True,
                    'show_legend': True}

        plot_extras = []
        if opts['show_fitrange']:
            popts = {'color': '#DDDDCC'}
            emin = opts['emin']
            emax = opts['emax']
            imin = index_of(dgroup.energy, emin)
            imax = index_of(dgroup.energy, emax)

            plot_extras.append(('vline', emin, None, popts))
            plot_extras.append(('vline', emax, None, popts))

        if opts['show_peakrange']:
            popts = {'marker': '+', 'markersize': 6}
            elo = opts['elo']
            ehi = opts['ehi']
            ilo = index_of(dgroup.xdat, elo)
            ihi = index_of(dgroup.xdat, ehi)

            plot_extras.append(('marker', elo, ydat[ilo], popts))
            plot_extras.append(('marker', ehi, ydat[ihi], popts))

        if opts['show_centroid']:
            popts = {'color': '#EECCCC'}
            ecen = getattr(dgroup.prepeaks, 'centroid', -1)
            if ecen > min(dgroup.energy):
                plot_extras.append(('vline', ecen, None,  popts))


        pframe = self.controller.get_display(win=2,
                                             stacked=(plot_choice==PLOT_RESID))
        ppanel = pframe.panel
        axes = ppanel.axes

        plotopts.update(PLOTOPTS_1)

        ppanel.plot(xdat, ydat, **plotopts)
        if plot_choice == PLOT_BASELINE:
            if not opts['plot_sub_bline']:
                ppanel.oplot(dgroup.prepeaks.energy,
                             dgroup.prepeaks.baseline,
                             label='baseline', **PLOTOPTS_2)

        elif plot_choice in (PLOT_FIT, PLOT_RESID):
            ppanel.oplot(dgroup.energy, yfit,
                         label='fit', **PLOTOPTS_1)

            if hasattr(dgroup, 'ycomps'):
                ncomp = len(dgroup.ycomps)
                icomp = 0
                for label, ycomp in dgroup.ycomps.items():
                    icomp +=1
                    fcomp = self.fit_components[label]
                    # print("ycomp: ", plot_choice, label, len(ycomp), len(dgroup.xfit),
                    #       fcomp.bkgbox.IsChecked(), opts['plot_sub_bline'], icomp, ncomp)
                    if not (fcomp.bkgbox.IsChecked() and opts['plot_sub_bline']):
                        ppanel.oplot(dgroup.xfit, ycomp, label=label,
                                     delay_draw=(icomp!=ncomp), style='short dashed')

            if plot_choice == PLOT_RESID:
                _ys = resid
                yrange = max(_ys) - min(_ys)
                plotopts['ymin'] = min(_ys) - 0.05 * yrange
                plotopts['ymax'] = max(_ys) + 0.05 * yrange
                plotopts['delay_draw'] = False
                plotopts['ylabel'] = 'data-fit'
                plotopts['label'] = '_nolegend_'

                pframe.plot(dgroup.energy, resid, panel='bot', **plotopts)
                pframe.Show()
                # print(" RESIDUAL PLOT  margins: ")
                # print(" top : ", pframe.panel.conf.margins)
                # print(" bot : ", pframe.panel_bot.conf.margins)


        for etype, x, y, opts in plot_extras:
            if etype == 'marker':
                popts = {'marker': 'o', 'markersize': 4,
                         'label': '_nolegend_',
                         'markerfacecolor': 'red',
                         'markeredgecolor': '#884444'}
                popts.update(opts)
                axes.plot([x], [y], **popts)
            elif etype == 'vline':
                popts = {'ymin': 0, 'ymax': 1.0, 'color': '#888888',
                         'label': '_nolegend_'}
                popts.update(opts)
                axes.axvline(x, **popts)
        ppanel.canvas.draw()
Exemplo n.º 21
0
def autobk(energy, mu=None, group=None, rbkg=1, nknots=None, e0=None,
           edge_step=None, kmin=0, kmax=None, kweight=1, dk=0.1,
           win='hanning', k_std=None, chi_std=None, nfft=2048, kstep=0.05,
           pre_edge_kws=None, nclamp=4, clamp_lo=1, clamp_hi=1,
           calc_uncertainties=True, err_sigma=1, _larch=None, **kws):
    """Use Autobk algorithm to remove XAFS background

    Parameters:
    -----------
      energy:    1-d array of x-ray energies, in eV, or group
      mu:        1-d array of mu(E)
      group:     output group (and input group for e0 and edge_step).
      rbkg:      distance (in Ang) for chi(R) above
                 which the signal is ignored. Default = 1.
      e0:        edge energy, in eV.  If None, it will be determined.
      edge_step: edge step.  If None, it will be determined.
      pre_edge_kws:  keyword arguments to pass to pre_edge()
      nknots:    number of knots in spline.  If None, it will be determined.
      kmin:      minimum k value   [0]
      kmax:      maximum k value   [full data range].
      kweight:   k weight for FFT.  [1]
      dk:        FFT window window parameter.  [0.1]
      win:       FFT window function name.     ['hanning']
      nfft:      array size to use for FFT [2048]
      kstep:     k step size to use for FFT [0.05]
      k_std:     optional k array for standard chi(k).
      chi_std:   optional chi array for standard chi(k).
      nclamp:    number of energy end-points for clamp [2]
      clamp_lo:  weight of low-energy clamp [1]
      clamp_hi:  weight of high-energy clamp [1]
      calc_uncertaintites:  Flag to calculate uncertainties in
                            mu_0(E) and chi(k) [True]
      err_sigma: sigma level for uncertainties in mu_0(E) and chi(k) [1]

    Output arrays are written to the provided group.

    Follows the 'First Argument Group' convention.
    """
    msg = sys.stdout
    if _larch is not None:
        msg = _larch.writer.write
    if 'kw' in kws:
        kweight = kws.pop('kw')
    if len(kws) > 0:
        msg('Unrecognized a:rguments for autobk():\n')
        msg('    %s\n' % (', '.join(kws.keys())))
        return
    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='autobk')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    energy = remove_dups(energy)
    # if e0 or edge_step are not specified, get them, either from the
    # passed-in group or from running pre_edge()
    group = set_xafsGroup(group, _larch=_larch)

    if edge_step is None and isgroup(group, 'edge_step'):
        edge_step = group.edge_step
    if e0 is None and isgroup(group, 'e0'):
        e0 = group.e0
    if e0 is None or edge_step is None:
        # need to run pre_edge:
        pre_kws = dict(nnorm=3, nvict=0, pre1=None,
                       pre2=-50., norm1=100., norm2=None)
        if pre_edge_kws is not None:
            pre_kws.update(pre_edge_kws)
        pre_edge(energy, mu, group=group, _larch=_larch, **pre_kws)
        if e0 is None:
            e0 = group.e0
        if edge_step is None:
            edge_step = group.edge_step
    if e0 is None or edge_step is None:
        msg('autobk() could not determine e0 or edge_step!: trying running pre_edge first\n')
        return

    # get array indices for rkbg and e0: irbkg, ie0
    ie0 = index_of(energy, e0)
    rgrid = np.pi/(kstep*nfft)
    if rbkg < 2*rgrid: rbkg = 2*rgrid
    irbkg = int(1.01 + rbkg/rgrid)

    # save ungridded k (kraw) and grided k (kout)
    # and ftwin (*k-weighting) for FT in residual
    enpe = energy[ie0:] - e0
    kraw = np.sign(enpe)*np.sqrt(ETOK*abs(enpe))
    if kmax is None:
        kmax = max(kraw)
    else:
        kmax = max(0, min(max(kraw), kmax))
    kout  = kstep * np.arange(int(1.01+kmax/kstep), dtype='float64')
    iemax = min(len(energy), 2+index_of(energy, e0+kmax*kmax/ETOK)) - 1

    # interpolate provided chi(k) onto the kout grid
    if chi_std is not None and k_std is not None:
        chi_std = np.interp(kout, k_std, chi_std)
    # pre-load FT window
    ftwin = kout**kweight * ftwindow(kout, xmin=kmin, xmax=kmax,
                                     window=win, dx=dk, dx2=dk)
    # calc k-value and initial guess for y-values of spline params
    nspl = max(5, min(64, int(2*rbkg*(kmax-kmin)/np.pi) + 2))
    spl_y, spl_k, spl_e  = np.zeros(nspl), np.zeros(nspl), np.zeros(nspl)
    for i in range(nspl):
        q  = kmin + i*(kmax-kmin)/(nspl - 1)
        ik = index_nearest(kraw, q)
        i1 = min(len(kraw)-1, ik + 5)
        i2 = max(0, ik - 5)
        spl_k[i] = kraw[ik]
        spl_e[i] = energy[ik+ie0]
        spl_y[i] = (2*mu[ik+ie0] + mu[i1+ie0] + mu[i2+ie0] ) / 4.0

    # get spline represention: knots, coefs, order=3
    # coefs will be varied in fit.
    knots, coefs, order = splrep(spl_k, spl_y)

    # set fit parameters from initial coefficients
    params = Parameters()
    for i in range(len(coefs)):
        params.add(name = FMT_COEF % i, value=coefs[i], vary=i<len(spl_y))

    initbkg, initchi = spline_eval(kraw[:iemax-ie0+1], mu[ie0:iemax+1],
                                   knots, coefs, order, kout)

    # do fit
    result = minimize(__resid, params, method='leastsq',
                      gtol=1.e-5, ftol=1.e-5, xtol=1.e-5, epsfcn=1.e-5,
                      kws = dict(ncoefs=len(coefs), chi_std=chi_std,
                                 knots=knots, order=order,
                                 kraw=kraw[:iemax-ie0+1],
                                 mu=mu[ie0:iemax+1], irbkg=irbkg, kout=kout,
                                 ftwin=ftwin, kweight=kweight,
                                 nfft=nfft, nclamp=nclamp,
                                 clamp_lo=clamp_lo, clamp_hi=clamp_hi))

    # write final results
    coefs = [result.params[FMT_COEF % i].value for i in range(len(coefs))]
    bkg, chi = spline_eval(kraw[:iemax-ie0+1], mu[ie0:iemax+1],
                           knots, coefs, order, kout)
    obkg = np.copy(mu)
    obkg[ie0:ie0+len(bkg)] = bkg

    # outputs to group
    group = set_xafsGroup(group, _larch=_larch)
    group.bkg  = obkg
    group.chie = (mu-obkg)/edge_step
    group.k    = kout
    group.chi  = chi/edge_step
    group.e0   = e0

    # now fill in 'autobk_details' group
    details = Group(params=result.params)

    details.init_bkg = np.copy(mu)
    details.init_bkg[ie0:ie0+len(bkg)] = initbkg
    details.init_chi = initchi/edge_step
    details.knots_e  = spl_e
    details.knots_y  = np.array([coefs[i] for i in range(nspl)])
    details.init_knots_y = spl_y
    details.nfev = result.nfev
    details.kmin = kmin
    details.kmax = kmax
    group.autobk_details = details

    # uncertainties in mu0 and chi: can be fairly slow.
    if calc_uncertainties:
        nchi = len(chi)
        nmue = iemax-ie0 + 1
        redchi = result.redchi
        covar  = result.covar / redchi
        jac_chi = np.zeros(nchi*nspl).reshape((nspl, nchi))
        jac_bkg = np.zeros(nmue*nspl).reshape((nspl, nmue))

        cvals, cerrs = [], []
        for i in range(len(coefs)):
             par = result.params[FMT_COEF % i]
             cvals.append(getattr(par, 'value', 0.0))
             cdel = getattr(par, 'stderr', 0.0)
             if cdel is None:
                 cdel = 0.0
             cerrs.append(cdel/2.0)
        cvals = np.array(cvals)
        cerrs = np.array(cerrs)

        # find derivatives by hand!
        _k = kraw[:nmue]
        _m = mu[ie0:iemax+1]
        for i in range(nspl):
            cval0 = cvals[i]
            cvals[i] = cval0 + cerrs[i]
            bkg1, chi1 = spline_eval(_k, _m, knots, cvals, order, kout)

            cvals[i] = cval0 - cerrs[i]
            bkg2, chi2 = spline_eval(_k, _m, knots, cvals, order, kout)

            cvals[i] = cval0
            jac_chi[i] = (chi1 - chi2) / (2*cerrs[i])
            jac_bkg[i] = (bkg1 - bkg2) / (2*cerrs[i])

        dfchi = np.zeros(nchi)
        dfbkg = np.zeros(nmue)
        for i in range(nspl):
            for j in range(nspl):
                dfchi += jac_chi[i]*jac_chi[j]*covar[i,j]
                dfbkg += jac_bkg[i]*jac_bkg[j]*covar[i,j]

        prob = 0.5*(1.0 + erf(err_sigma/np.sqrt(2.0)))
        dchi = t.ppf(prob, nchi-nspl) * np.sqrt(dfchi*redchi)
        dbkg = t.ppf(prob, nmue-nspl) * np.sqrt(dfbkg*redchi)

        group.delta_chi = dchi
        group.delta_bkg = 0.0*mu
        group.delta_bkg[ie0:ie0+len(dbkg)] = dbkg
Exemplo n.º 22
0
def mback(energy, mu=None, group=None, z=None, edge='K', e0=None, pre1=None, pre2=-50,
          norm1=100, norm2=None, order=3, leexiang=False, tables='chantler', fit_erfc=False,
          return_f1=False, _larch=None):
    """
    Match mu(E) data for tabulated f''(E) using the MBACK algorithm and,
    optionally, the Lee & Xiang extension

    Arguments
    ----------
      energy:     array of x-ray energies, in eV.
      mu:         array of mu(E).
      group:      output group.
	  z:          atomic number of the absorber.
	  edge:       x-ray absorption edge (default 'K')
      e0:         edge energy, in eV.  If None, it will be determined here.
      pre1:       low E range (relative to e0) for pre-edge region.
      pre2:       high E range (relative to e0) for pre-edge region.
      norm1:      low E range (relative to e0) for post-edge region.
      norm2:      high E range (relative to e0) for post-edge region.
      order:      order of the legendre polynomial for normalization.
	              (default=3, min=0, max=5).
      leexiang:   boolean (default False)  to use the Lee & Xiang extension.
      tables:     tabulated scattering factors: 'chantler' (default) or 'cl' (cromer-liberman)
      fit_erfc:   boolean (default False) to fit parameters of error function.
      return_f1:  boolean (default False) to include the f1 array in the group.


    Returns
    -------
      None

    The following attributes will be written to the output group:
      group.f2:            tabulated f2(E).
      group.f1:            tabulated f1(E) (if 'return_f1' is True).
      group.fpp:           mback atched spectrum.
	  group.edge_step:     edge step of spectrum.
	  group.norm:          normalized spectrum.
      group.mback_params:  group of parameters for the minimization.

    References:
      * MBACK (Weng, Waldo, Penner-Hahn): http://dx.doi.org/10.1086/303711
      * Lee and Xiang: http://dx.doi.org/10.1088/0004-637X/702/2/970
      * Cromer-Liberman: http://dx.doi.org/10.1063/1.1674266
      * Chantler: http://dx.doi.org/10.1063/1.555974
    """
    order = max(min(order, MAXORDER), 0)

    ### implement the First Argument Group convention
    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='mback')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    group = set_xafsGroup(group, _larch=_larch)

    energy = remove_dups(energy)
    if e0 is None or e0 < energy[1] or e0 > energy[-2]:
        e0 = find_e0(energy, mu, group=group)

    print(e0)
    ie0 = index_nearest(energy, e0)
    e0 = energy[ie0]

    pre1_input = pre1
    norm2_input = norm2

    if pre1 is None:  pre1  = min(energy) - e0
    if norm2 is None: norm2 = max(energy) - e0
    if norm2 < 0:     norm2 = max(energy) - e0 - norm2
    pre1  = max(pre1,  (min(energy) - e0))
    norm2 = min(norm2, (max(energy) - e0))

    if pre1 > pre2:
        pre1, pre2 = pre2, pre1
    if norm1 > norm2:
        norm1, norm2 = norm2, norm1

    p1 = index_of(energy, pre1+e0)
    p2 = index_nearest(energy, pre2+e0)
    n1 = index_nearest(energy, norm1+e0)
    n2 = index_of(energy, norm2+e0)
    if p2 - p1 < 2:
        p2 = min(len(energy), p1 + 2)
    if n2 - n1 < 2:
        p2 = min(len(energy), p1 + 2)

    ## theta is a boolean array indicating the
	## energy values considered for the fit.
    ## theta=1 for included values, theta=0 for excluded values.
    theta            = np.zeros_like(energy, dtype='int')
    theta[p1:(p2+1)] = 1
    theta[n1:(n2+1)] = 1

    ## weights for the pre- and post-edge regions, as defined in the MBACK paper (?)
    weight            = np.ones_like(energy, dtype=float)
    weight[p1:(p2+1)] = np.sqrt(np.sum(weight[p1:(p2+1)]))
    weight[n1:(n2+1)] = np.sqrt(np.sum(weight[n1:(n2+1)]))

	## get the f'' function from CL or Chantler
    if tables.lower() == 'chantler':
        f1 = f1_chantler(z, energy, _larch=_larch)
        f2 = f2_chantler(z, energy, _larch=_larch)
    else:
        (f1, f2) = f1f2(z, energy, edge=edge, _larch=_larch)
    group.f2 = f2
    if return_f1:
        group.f1 = f1

    em = find_xray_line(z, edge)[0] # erfc centroid

    params = Parameters()
    params.add(name='s',  value=1.0,  vary=True)  # scale of data
    params.add(name='xi', value=50.0, vary=False, min=0) # width of erfc
    params.add(name='a',  value=0.0, vary=False)  # amplitude of erfc
    if fit_erfc:
        params['a'].vary  = True
        params['a'].value = 0.5
        params['xi'].vary  = True

    for i in range(order+1): # polynomial coefficients
        params.add(name='c%d' % i, value=0, vary=True)

    out = minimize(match_f2, params, method='leastsq',
                   gtol=1.e-5, ftol=1.e-5, xtol=1.e-5, epsfcn=1.e-5,
                   kws = dict(en=energy, mu=mu, f2=f2, e0=e0, em=em,
                              order=order, weight=weight, theta=theta, leexiang=leexiang))

    opars = out.params.valuesdict()
    eoff = energy - e0

    norm_function = opars['a']*erfc((energy-em)/opars['xi']) + opars['c0']
    for i in range(order):
        attr = 'c%d' % (i + 1)
        if attr in opars:
            norm_function  += opars[attr]* eoff**(i + 1)

    group.e0 = e0
    group.fpp = opars['s']*mu - norm_function
    # calculate edge step and normalization from f2 + norm_function
    pre_f2 = preedge(energy, group.f2+norm_function, e0=e0, pre1=pre1,
	         pre2=pre2, norm1=norm1, norm2=norm2, nnorm=2, nvict=0)
    group.edge_step = pre_f2['edge_step'] / opars['s']
    group.norm = (opars['s']*mu -  pre_f2['pre_edge']) / pre_f2['edge_step']
    group.mback_details = Group(params=opars, pre_f2=pre_f2,
                                f2_scaled=opars['s']*f2,
                                norm_function=norm_function)
Exemplo n.º 23
0
def pre_edge_baseline(energy,
                      norm=None,
                      group=None,
                      form='lorentzian',
                      emin=None,
                      emax=None,
                      elo=None,
                      ehi=None,
                      with_line=True,
                      _larch=None):
    """remove baseline from main edge over pre edge peak region

    This assumes that pre_edge() has been run successfully on the spectra
    and that the spectra has decent pre-edge subtraction and normalization.

    Arguments
    ----------
    energy:    array of x-ray energies, in eV, or group (see note 1)
    norm:      array of normalized mu(E)
    group:     output group
    elo:       low energy of pre-edge peak region to not fit baseline [e0-20]
    ehi:       high energy of pre-edge peak region ot not fit baseline [e0-10]
    emax       max energy (eV) to use for baesline fit [e0-5]
    emin:      min energy (eV) to use for baesline fit [e0-40]
    form:      form used for baseline (see note 2)  ['lorentzian']
    with_line: whether to include linear component in baseline ['True']


    Returns
    -------
      None

    A group named 'prepeaks' will be created in the output group, with the following
    attributes:
        energy        energy array for pre-edge peaks = energy[emin-eneg:emax+epos]
        baseline      fitted baseline array over pre-edge peak energies
        mu            baseline-subtraced spectrum over pre-edge peak energies
        dmu           estimated uncertainty in mu from fit
        centroid      estimated centroid of pre-edge peaks (see note 3)
        peak_energies list of predicted peak energies (see note 4)
        fit_details   details of fit to extract pre-edge peaks.

    (if the output group is None, _sys.xafsGroup will be written to)

    Notes
    -----
     1 If the first argument is a Group, it must contain 'energy' and 'norm'.
       See First Argrument Group in Documentation

     2 A function will be fit to the input mu(E) data over the range between
       [emin:elo] and [ehi:emax], ignorng the pre-edge peaks in the
       region [elo:ehi].  The baseline function is specified with the `form`
       keyword argument, which can be one of
           'lorentzian', 'gaussian', or 'voigt',
       with 'lorentzian' the default.  In addition, the `with_line` keyword
       argument can be used to add a line to this baseline function.

     3 The value calculated for `prepeaks.centroid`  will be found as
         (prepeaks.energy*prepeaks.mu).sum() / prepeaks.mu.sum()
     4 The values in the `peak_energies` list will be predicted energies
       of the peaks in `prepeaks.mu` as found by peakutils.

    """
    energy, norm, group = parse_group_args(energy,
                                           members=('energy', 'norm'),
                                           defaults=(norm, ),
                                           group=group,
                                           fcn_name='pre_edge_baseline')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(norm.shape) > 1:
        norm = norm.squeeze()

    dat_emin, dat_emax = min(energy), max(energy)

    dat_e0 = getattr(group, 'e0', -1)

    if dat_e0 > 0:
        if emin is None:
            emin = dat_e0 - 30.0
        if emax is None:
            emax = dat_e0 - 1.0
        if elo is None:
            elo = dat_e0 - 15.0
        if ehi is None:
            ehi = dat_e0 - 5.0
        if emin < 0:
            emin += dat_e0
        if elo < 0:
            elo += dat_e0
        if emax < dat_emin:
            emax += dat_e0
        if ehi < dat_emin:
            ehi += dat_e0

    if emax is None or emin is None or elo is None or ehi is None:
        raise ValueError("must provide emin and emax to pre_edge_baseline")

    # get indices for input energies
    if emin > emax:
        emin, emax = emax, emin
    if emin > elo:
        elo, emin = emin, elo
    if ehi > emax:
        ehi, emax = emax, ehi

    imin = index_of(energy, emin)
    ilo = index_of(energy, elo)
    ihi = index_of(energy, ehi)
    imax = index_of(energy, emax)

    # build xdat, ydat: dat to fit (skipping pre-edge peaks)
    xdat = np.concatenate((energy[imin:ilo + 1], energy[ihi:imax + 1]))
    ydat = np.concatenate((norm[imin:ilo + 1], norm[ihi:imax + 1]))

    # build fitting model: note that we always include
    # a LinearModel but may fix slope and intercept
    form = form.lower()
    if form.startswith('voig'):
        model = VoigtModel()
    elif form.startswith('gaus'):
        model = GaussianModel()
    else:
        model = LorentzianModel()

    model += LinearModel()
    params = model.make_params(amplitude=1.0,
                               sigma=2.0,
                               center=emax,
                               intercept=0,
                               slope=0)
    params['amplitude'].min = 0.0
    params['sigma'].min = 0.25
    params['sigma'].max = 50.0
    params['center'].max = emax + 25.0
    params['center'].min = emax - 25.0

    if not with_line:
        params['slope'].vary = False
        params['intercept'].vary = False

    # run fit
    result = model.fit(ydat, params, x=xdat)

    # energy including pre-edge peaks, for output
    edat = energy[imin:imax + 1]

    # get baseline and resulting mu over edat range
    bline = result.eval(result.params, x=edat)
    mu = norm[imin:imax + 1] - bline

    # uncertainty in mu includes only uncertainties in baseline fit
    dmu = result.eval_uncertainty(result.params, x=edat)

    # estimate centroid and its uncertainty
    cen = (edat * mu).sum() / mu.sum()
    cen_plus = (edat * (mu + dmu)).sum() / (mu + dmu).sum()
    cen_minus = (edat * (mu - dmu)).sum() / (mu - dmu).sum()
    dcen = abs(cen_minus - cen_plus) / 2.0

    # locate peak positions
    peak_energies = []
    if HAS_PEAKUTILS:
        peak_ids = peakutils.peak.indexes(mu, thres=0.05, min_dist=2)
        peak_energies = [edat[pid] for pid in peak_ids]

    group = set_xafsGroup(group, _larch=_larch)
    group.prepeaks = Group(energy=edat,
                           mu=mu,
                           delta_mu=dmu,
                           baseline=bline,
                           centroid=cen,
                           delta_centroid=dcen,
                           peak_energies=peak_energies,
                           fit_details=result,
                           emin=emin,
                           emax=emax,
                           elo=elo,
                           ehi=ehi,
                           form=form,
                           with_line=with_line)
    return
Exemplo n.º 24
0
def concentration_resid(pars,
                        lineData=None,
                        mca=None,
                        phiPrime=np.pi / 2.,
                        phiDblPrime=np.pi / 2.,
                        xray_energy=30000.,
                        larch=None):

    cscPhiPrime = 1. / np.sin(phiPrime)
    cscPhiDblPrime = 1. / np.sin(phiDblPrime)
    energy = mca.get_energy() * 1000.
    dE = energy[1] - energy[0]
    probeSpectrum = np.zeros(len(energy))
    ind = index_of(energy, xray_energy)
    probeSpectrum[ind] = 1.0
    C = np.array([pars[elem + '_con'].value for elem in lineData], ndmin=2).T
    Cal = np.array([pars[elem + '_cal'].value for elem in lineData])
    Intensity = np.array([lineData[elem][2] for elem in lineData])

    mu = np.zeros((len(lineData) + 1, len(energy)))
    for i, elem_i in enumerate(lineData):
        mu[i, :] = mu_elam(elem_i, energy, kind='total', _larch=larch)
        mu[-1, :] += C[i, 0] * mu[i, :]

    beta = np.zeros((len(lineData), len(lineData), len(energy)))
    delta = np.zeros((len(lineData), len(lineData), len(energy)))
    for i, elem_i in enumerate(lineData):

        line_en_i = lineData[elem_i][1]

        edge_i = lineData[elem_i][0][len(elem_i)].title()
        edge_en_i, _, r_i = xray_edge(elem_i, edge_i, _larch=larch)

        for j, elem_j in enumerate(lineData):

            line_en_j = lineData[elem_j][1]

            edge_j = lineData[elem_j][0][len(elem_j)].title()
            line_j = lineData[elem_j][0][len(elem_j):].title()
            edge_en_j, _, r_j = xray_edge(elem_j, edge_j, _larch=larch)
            yield_j, _, prob_j = fluo_yield(elem_j,
                                            edge_j,
                                            line_j,
                                            np.max(energy),
                                            _larch=larch)
            k_j = prob_j * yield_j * (r_j - 1.) / r_j

            mu_s_prime = mu[-1, :] * cscPhiPrime
            mu_s_line_en_j = np.interp(line_en_j, energy, mu[-1, :])
            mu_s_dblPrime_line_en_i = np.interp(line_en_i, energy,
                                                mu[-1, :]) * cscPhiDblPrime

            P_ij = np.log(1. + mu_s_prime / mu_s_line_en_j) / mu_s_prime + \
                   np.log(1. + mu_s_dblPrime_line_en_i / mu_s_line_en_j) / mu_s_dblPrime_line_en_i

            beta[i,j,:]  = mu[j,:] * cscPhiPrime + \
                           np.interp(line_en_i, energy, mu[j,:]) * cscPhiDblPrime
            beta[i,j,:] /= mu[i,:] * cscPhiPrime + \
                           np.interp(line_en_i, energy, mu[i,:]) * cscPhiDblPrime
            beta[i, j, :] -= 1.

            delta[i, j, :] = np.where(energy >= edge_en_j, 0.5, 0.0)
            if line_en_j <= edge_en_i: delta[i, j, :] *= 0.
            delta[i, j, :] *= k_j
            delta[i, j, :] *= mu[j, :] * cscPhiPrime
            delta[i, j, :] *= np.interp(line_en_j, energy, mu[i, :])
            delta[i,j,:] /= (mu[-1,:] * cscPhiPrime) + \
                            (np.interp(line_en_i, energy, mu[-1,:]) * cscPhiDblPrime)
            delta[i, j, :] *= P_ij

    W = np.zeros((1, len(lineData), len(energy)))
    for i, elem in enumerate(lineData):
        line_en_i = lineData[elem_i][1]
        mu_i_star = mu[i,:] * cscPhiPrime +\
                    np.interp(line_en_i, energy, mu[i,:]) * cscPhiDblPrime
        W[0, i, :] = mu[i, :] * probeSpectrum * dE
        W[0, i, :] /= mu_i_star * (1 + np.sum(C * beta[i, :, :], axis=0))

    alpha = np.sum(W * beta, axis=2) / np.sum(W, axis=2)
    epsilon = np.sum(W * delta, axis=2) / np.sum(W, axis=2)

    num = 1 + np.sum(C.T * epsilon, axis=1)
    den = 1 + np.sum(C.T * alpha, axis=1)

    C = np.reshape(C, (len(C)))
    print(pars['cu_con'].value, pars['zn_con'].value, pars['mn_con'].value)

    return Intensity - Cal * C * num / den
Exemplo n.º 25
0
def autobk(energy, mu=None, group=None, rbkg=1, nknots=None, e0=None,
           edge_step=None, kmin=0, kmax=None, kweight=1, dk=0,
           win='hanning', k_std=None, chi_std=None, nfft=2048, kstep=0.05,
           pre_edge_kws=None, nclamp=4, clamp_lo=1, clamp_hi=1,
           calc_uncertainties=True, err_sigma=1, _larch=None, **kws):
    """Use Autobk algorithm to remove XAFS background

    Parameters:
    -----------
      energy:    1-d array of x-ray energies, in eV, or group
      mu:        1-d array of mu(E)
      group:     output group (and input group for e0 and edge_step).
      rbkg:      distance (in Ang) for chi(R) above
                 which the signal is ignored. Default = 1.
      e0:        edge energy, in eV.  If None, it will be determined.
      edge_step: edge step.  If None, it will be determined.
      pre_edge_kws:  keyword arguments to pass to pre_edge()
      nknots:    number of knots in spline.  If None, it will be determined.
      kmin:      minimum k value   [0]
      kmax:      maximum k value   [full data range].
      kweight:   k weight for FFT.  [1]
      dk:        FFT window window parameter.  [0]
      win:       FFT window function name.     ['hanning']
      nfft:      array size to use for FFT [2048]
      kstep:     k step size to use for FFT [0.05]
      k_std:     optional k array for standard chi(k).
      chi_std:   optional chi array for standard chi(k).
      nclamp:    number of energy end-points for clamp [2]
      clamp_lo:  weight of low-energy clamp [1]
      clamp_hi:  weight of high-energy clamp [1]
      calc_uncertaintites:  Flag to calculate uncertainties in
                            mu_0(E) and chi(k) [True]
      err_sigma: sigma level for uncertainties in mu_0(E) and chi(k) [1]

    Output arrays are written to the provided group.

    Follows the 'First Argument Group' convention.
    """
    msg = _larch.writer.write
    if 'kw' in kws:
        kweight = kws.pop('kw')
    if len(kws) > 0:
        msg('Unrecognized a:rguments for autobk():\n')
        msg('    %s\n' % (', '.join(kws.keys())))
        return
    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='autobk')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    energy = remove_dups(energy)
    # if e0 or edge_step are not specified, get them, either from the
    # passed-in group or from running pre_edge()
    group = set_xafsGroup(group, _larch=_larch)

    if edge_step is None and isgroup(group, 'edge_step'):
        edge_step = group.edge_step
    if e0 is None and isgroup(group, 'e0'):
        e0 = group.e0
    if e0 is None or edge_step is None:
        # need to run pre_edge:
        pre_kws = dict(nnorm=3, nvict=0, pre1=None,
                       pre2=-50., norm1=100., norm2=None)
        if pre_edge_kws is not None:
            pre_kws.update(pre_edge_kws)
        pre_edge(energy, mu, group=group, _larch=_larch, **pre_kws)
        if e0 is None:
            e0 = group.e0
        if edge_step is None:
            edge_step = group.edge_step
    if e0 is None or edge_step is None:
        msg('autobk() could not determine e0 or edge_step!: trying running pre_edge first\n')
        return

    # get array indices for rkbg and e0: irbkg, ie0
    ie0 = index_of(energy, e0)
    rgrid = np.pi/(kstep*nfft)
    if rbkg < 2*rgrid: rbkg = 2*rgrid
    irbkg = int(1.01 + rbkg/rgrid)

    # save ungridded k (kraw) and grided k (kout)
    # and ftwin (*k-weighting) for FT in residual
    enpe = energy[ie0:] - e0
    kraw = np.sign(enpe)*np.sqrt(ETOK*abs(enpe))
    if kmax is None:
        kmax = max(kraw)
    else:
        kmax = max(0, min(max(kraw), kmax))
    kout  = kstep * np.arange(int(1.01+kmax/kstep), dtype='float64')
    iemax = min(len(energy), 2+index_of(energy, e0+kmax*kmax/ETOK)) - 1

    # interpolate provided chi(k) onto the kout grid
    if chi_std is not None and k_std is not None:
        chi_std = np.interp(kout, k_std, chi_std)
    # pre-load FT window
    ftwin = kout**kweight * ftwindow(kout, xmin=kmin, xmax=kmax,
                                     window=win, dx=dk)
    # calc k-value and initial guess for y-values of spline params
    nspl = max(4, min(128, 2*int(rbkg*(kmax-kmin)/np.pi) + 1))
    spl_y, spl_k, spl_e  = np.zeros(nspl), np.zeros(nspl), np.zeros(nspl)
    for i in range(nspl):
        q  = kmin + i*(kmax-kmin)/(nspl - 1)
        ik = index_nearest(kraw, q)
        i1 = min(len(kraw)-1, ik + 5)
        i2 = max(0, ik - 5)
        spl_k[i] = kraw[ik]
        spl_e[i] = energy[ik+ie0]
        spl_y[i] = (2*mu[ik+ie0] + mu[i1+ie0] + mu[i2+ie0] ) / 4.0

    # get spline represention: knots, coefs, order=3
    # coefs will be varied in fit.
    knots, coefs, order = splrep(spl_k, spl_y)

    # set fit parameters from initial coefficients
    params = Parameters()
    for i in range(len(coefs)):
        params.add(name = FMT_COEF % i, value=coefs[i], vary=i<len(spl_y))

    initbkg, initchi = spline_eval(kraw[:iemax-ie0+1], mu[ie0:iemax+1],
                                   knots, coefs, order, kout)

    # do fit
    result = minimize(__resid, params, method='leastsq',
                      gtol=1.e-5, ftol=1.e-5, xtol=1.e-5, epsfcn=1.e-5,
                      kws = dict(ncoefs=len(coefs), chi_std=chi_std,
                                 knots=knots, order=order,
                                 kraw=kraw[:iemax-ie0+1],
                                 mu=mu[ie0:iemax+1], irbkg=irbkg, kout=kout,
                                 ftwin=ftwin, kweight=kweight,
                                 nfft=nfft, nclamp=nclamp,
                                 clamp_lo=clamp_lo, clamp_hi=clamp_hi))

    # write final results
    coefs = [result.params[FMT_COEF % i].value for i in range(len(coefs))]
    bkg, chi = spline_eval(kraw[:iemax-ie0+1], mu[ie0:iemax+1],
                           knots, coefs, order, kout)
    obkg = np.copy(mu)
    obkg[ie0:ie0+len(bkg)] = bkg

    # outputs to group
    group = set_xafsGroup(group, _larch=_larch)
    group.bkg  = obkg
    group.chie = (mu-obkg)/edge_step
    group.k    = kout
    group.chi  = chi/edge_step

    # now fill in 'autobk_details' group
    details = Group(params=result.params)

    details.init_bkg = np.copy(mu)
    details.init_bkg[ie0:ie0+len(bkg)] = initbkg
    details.init_chi = initchi/edge_step
    details.knots_e  = spl_e
    details.knots_y  = np.array([coefs[i] for i in range(nspl)])
    details.init_knots_y = spl_y
    details.nfev = result.nfev
    details.kmin = kmin
    details.kmax = kmax
    group.autobk_details = details

    # uncertainties in mu0 and chi: can be fairly slow.
    if calc_uncertainties:
        nchi = len(chi)
        nmue = iemax-ie0 + 1
        redchi = result.redchi
        covar  = result.covar / redchi
        jac_chi = np.zeros(nchi*nspl).reshape((nspl, nchi))
        jac_bkg = np.zeros(nmue*nspl).reshape((nspl, nmue))

        cvals, cerrs = [], []
        for i in range(len(coefs)):
             par = result.params[FMT_COEF % i]
             cvals.append(getattr(par, 'value', 0.0))
             cdel = getattr(par, 'stderr', 0.0)
             if cdel is None:
                 cdel = 0.0
             cerrs.append(cdel/2.0)
        cvals = np.array(cvals)
        cerrs = np.array(cerrs)

        # find derivatives by hand!
        _k = kraw[:nmue]
        _m = mu[ie0:iemax+1]
        for i in range(nspl):
            cval0 = cvals[i]
            cvals[i] = cval0 + cerrs[i]
            bkg1, chi1 = spline_eval(_k, _m, knots, cvals, order, kout)

            cvals[i] = cval0 - cerrs[i]
            bkg2, chi2 = spline_eval(_k, _m, knots, cvals, order, kout)

            cvals[i] = cval0
            jac_chi[i] = (chi1 - chi2) / (2*cerrs[i])
            jac_bkg[i] = (bkg1 - bkg2) / (2*cerrs[i])

        dfchi = np.zeros(nchi)
        dfbkg = np.zeros(nmue)
        for i in range(nspl):
            for j in range(nspl):
                dfchi += jac_chi[i]*jac_chi[j]*covar[i,j]
                dfbkg += jac_bkg[i]*jac_bkg[j]*covar[i,j]

        prob = 0.5*(1.0 + erf(err_sigma/np.sqrt(2.0)))
        dchi = t.ppf(prob, nchi-nspl) * np.sqrt(dfchi*redchi)
        dbkg = t.ppf(prob, nmue-nspl) * np.sqrt(dfbkg*redchi)

        group.delta_chi = dchi
        group.delta_bkg = 0.0*mu
        group.delta_bkg[ie0:ie0+len(dbkg)] = dbkg
Exemplo n.º 26
0
def pre_edge(energy, mu=None, group=None, e0=None, step=None,
             nnorm=2, nvict=0, pre1=None, pre2=-50,
             norm1=100, norm2=None, make_flat=True, _larch=None):
    """pre edge subtraction, normalization for XAFS

    This performs a number of steps:
       1. determine E0 (if not supplied) from max of deriv(mu)
       2. fit a line of polymonial to the region below the edge
       3. fit a polymonial to the region above the edge
       4. extrapolae the two curves to E0 to determine the edge jump

    Arguments
    ----------
    energy:  array of x-ray energies, in eV, or group (see note)
    mu:      array of mu(E)
    group:   output group
    e0:      edge energy, in eV.  If None, it will be determined here.
    step:    edge jump.  If None, it will be determined here.
    pre1:    low E range (relative to E0) for pre-edge fit
    pre2:    high E range (relative to E0) for pre-edge fit
    nvict:   energy exponent to use for pre-edg fit.  See Note
    norm1:   low E range (relative to E0) for post-edge fit
    norm2:   high E range (relative to E0) for post-edge fit
    nnorm:   degree of polynomial (ie, nnorm+1 coefficients will be found) for
             post-edge normalization curve. Default=2 (quadratic), max=5
    make_flat: boolean (Default True) to calculate flattened output.


    Returns
    -------
      None

    The following attributes will be written to the output group:
        e0          energy origin
        edge_step   edge step
        norm        normalized mu(E)
        flat        flattened, normalized mu(E)
        pre_edge    determined pre-edge curve
        post_edge   determined post-edge, normalization curve
        dmude       derivative of mu(E)

    (if the output group is None, _sys.xafsGroup will be written to)

    Notes
    -----
     1 nvict gives an exponent to the energy term for the fits to the pre-edge
       and the post-edge region.  For the pre-edge, a line (m * energy + b) is
       fit to mu(energy)*energy**nvict over the pre-edge region,
       energy=[e0+pre1, e0+pre2].  For the post-edge, a polynomial of order
       nnorm will be fit to mu(energy)*energy**nvict of the post-edge region
       energy=[e0+norm1, e0+norm2].

     2 If the first argument is a Group, it must contain 'energy' and 'mu'.
       If it exists, group.e0 will be used as e0.
       See First Argrument Group in Documentation
    """


    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='pre_edge')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    pre_dat = preedge(energy, mu, e0=e0, step=step, nnorm=nnorm,
                      nvict=nvict, pre1=pre1, pre2=pre2, norm1=norm1,
                      norm2=norm2)


    group = set_xafsGroup(group, _larch=_larch)

    e0    = pre_dat['e0']
    norm  = pre_dat['norm']
    norm1 = pre_dat['norm1']
    norm2 = pre_dat['norm2']
    # generate flattened spectra, by fitting a quadratic to .norm
    # and removing that.
    flat = norm
    ie0 = index_nearest(energy, e0)
    p1 = index_of(energy, norm1+e0)
    p2 = index_nearest(energy, norm2+e0)
    if p2-p1 < 2:
        p2 = min(len(energy), p1 + 2)

    if make_flat and p2-p1 > 4:
        enx, mux = remove_nans2(energy[p1:p2], norm[p1:p2])
        # enx, mux = (energy[p1:p2], norm[p1:p2])
        fpars = Parameters()
        ncoefs = len(pre_dat['norm_coefs'])
        fpars.add('c0', value=0, vary=True)
        fpars.add('c1', value=0, vary=(ncoefs>1))
        fpars.add('c2', value=0, vary=(ncoefs>2))
        fit = Minimizer(flat_resid, fpars, fcn_args=(enx, mux))
        result = fit.leastsq(xtol=1.e-6, ftol=1.e-6)

        fc0 = result.params['c0'].value
        fc1 = result.params['c1'].value
        fc2 = result.params['c2'].value

        flat_diff   = fc0 + energy * (fc1 + energy * fc2)
        flat        = norm - (flat_diff  - flat_diff[ie0])
        flat[:ie0]  = norm[:ie0]


    group.e0 = e0
    group.norm = norm
    group.flat = flat
    group.dmude = np.gradient(mu)/np.gradient(energy)
    group.edge_step  = pre_dat['edge_step']
    group.pre_edge   = pre_dat['pre_edge']
    group.post_edge  = pre_dat['post_edge']

    group.pre_edge_details = Group()
    group.pre_edge_details.pre1   = pre_dat['pre1']
    group.pre_edge_details.pre2   = pre_dat['pre2']
    group.pre_edge_details.nnorm  = pre_dat['nnorm']
    group.pre_edge_details.norm1  = pre_dat['norm1']
    group.pre_edge_details.norm2  = pre_dat['norm2']
    group.pre_edge_details.nvict  = pre_dat['nvict']
    group.pre_edge_details.pre1_input  = pre_dat['pre1_input']
    group.pre_edge_details.norm2_input  = pre_dat['norm2_input']
    group.pre_edge_details.pre_slope  = pre_dat['precoefs'][0]
    group.pre_edge_details.pre_offset = pre_dat['precoefs'][1]

    for i in range(MAX_NNORM):
        if hasattr(group, 'norm_c%i' % i):
            delattr(group, 'norm_c%i' % i)
    for i, c in enumerate(pre_dat['norm_coefs']):
        setattr(group.pre_edge_details, 'norm_c%i' % i, c)
    return
Exemplo n.º 27
0
def rebin_xafs(energy, mu=None, group=None, e0=None, pre1=None, pre2=-30,
               pre_step=2, xanes_step=None, exafs1=15, exafs2=None,
               exafs_kstep=0.05, method='centroid', _larch=None):
    """rebin XAFS energy and mu to a 'standard 3 region XAFS scan'

    Arguments
    ---------
    energy       input energy array
    mu           input mu array
    group        output group
    e0           energy reference -- all energy values are relative to this
    pre1         start of pre-edge region [1st energy point]
    pre2         end of pre-edge region, start of XANES region [-30]
    pre_step     energy step for pre-edge region [2]
    xanes_step   energy step for XANES region [see note]
    exafs1       end of XANES region, start of EXAFS region [15]
    exafs2       end of EXAFS region [last energy point]
    exafs_kstep  k-step for EXAFS region [0.05]
    method       one of 'boxcar', 'centroid' ['centroid']

    Returns
    -------
      None

    A group named 'rebinned' will be created in the output group, with the
    following  attributes:
        energy  new energy array
        mu      mu for energy array
        e0      e0 copied from current group

    (if the output group is None, _sys.xafsGroup will be written to)

    Notes
    ------
     1 If the first argument is a Group, it must contain 'energy' and 'mu'.
       See First Argrument Group in Documentation

     2 If xanes_step is None, it will be found from the data.  If it is
       given, it may be increased to better fit the input energy array.

     3 The EXAFS region will be spaced in k-space

     4 The rebinned data is found by determining which segments of the
       input energy correspond to each bin in the new energy array. That
       is, each input energy is assigned to exactly one bin in the new
       array.  For each new energy bin, the new value is selected from the
       data in the segment as either
         a) linear interpolation if there are fewer than 3 points in the segment.
         b) mean value ('boxcar')
         c) centroid ('centroid')

    """
    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                        fcn_name='rebin_xafs')

    if e0 is None:
        e0 = getattr(group, 'e0', None)

    if e0 is None:
        raise ValueError("need e0")

    if pre1 is None:
        pre1 = pre_step*int((min(energy) - e0)/pre_step)

    if exafs2 is None:
        exafs2 = max(energy) - e0

    # determine xanes step size:
    #  find mean of energy difference, ignoring first/last 1% of energies
    npts = len(energy)
    n1 = max(2, int(npts/100.0))
    de_mean = np.diff(energy[n1:-n1]).mean()
    xanes_step_def = max(0.1, 0.05 * (1 + int(de_mean/0.05)))
    if xanes_step is None:
        xanes_step = xanes_step_def
    else:
        xanes_step = max(xanes_step, xanes_step_def)

    # create new energy array from the 3 segments (pre, xanes, exafs)
    en = []
    for start, stop, step, isk in ((pre1, pre2, pre_step, False),
                                   (pre2, exafs1, xanes_step, False),
                                   (exafs1, exafs2, exafs_kstep, True)):
        if isk:
            start = etok(start)
            stop = etok(stop)
        reg = np.linspace(start+step, stop, int(0.1 + abs(stop-start)/step))
        if isk:
            reg = ktoe(reg)
        en.extend(e0 + reg)

    # find the segment boundaries of the old energy array
    bounds = [index_of(energy, e) for e in en]
    mu_out = []
    err_out = []
    j0 = 0
    for i in range(len(en)):
        if i == len(en) - 1:
            j1 = len(energy) - 1
        else:
            j1 = int((bounds[i] + bounds[i+1] + 1)/2.0)
        # if not enough points in segment, do interpolation
        if (j1 - j0) < 3:
            jx = j1 + 1
            if (jx - j0) < 2:
                jx += 1
            val = interp1d(energy[j0:jx], mu[j0:jx], en[i])
            err = mu[j0:j1].std()
        else:
            if method.startswith('box'):
                val =  mu[j0:j1].mean()
            else:
                val = (mu[j0:j1]*energy[j0:j1]).mean()/energy[j0:j1].mean()
        mu_out.append(val)
        err_out.append(mu[j0:j1].std())
        j0 = j1

    newname = group.__name__ + '_rebinned'
    group.rebinned = Group(energy=np.array(en), mu=np.array(mu_out),
                           delta_mu=np.array(err_out), e0=e0,
                           __name__=newname)
    return
Exemplo n.º 28
0
def pre_edge_baseline(energy, norm=None, group=None, form='lorentzian',
                      emin=None, emax=None, elo=None, ehi=None,
                      with_line=True, _larch=None):
    """remove baseline from main edge over pre edge peak region

    This assumes that pre_edge() has been run successfully on the spectra
    and that the spectra has decent pre-edge subtraction and normalization.

    Arguments
    ----------
    energy:    array of x-ray energies, in eV, or group (see note 1)
    norm:      array of normalized mu(E)
    group:     output group
    elo:       low energy of pre-edge peak region to not fit baseline [e0-20]
    ehi:       high energy of pre-edge peak region ot not fit baseline [e0-10]
    emax:      max energy (eV) to use for baesline fit [e0-5]
    emin:      min energy (eV) to use for baesline fit [e0-40]
    form:      form used for baseline (see note 2)  ['lorentzian']
    with_line: whether to include linear component in baseline ['True']


    Returns
    -------
      None

    A group named 'prepeaks' will be created in the output group, with the following
    attributes:
        energy        energy array for pre-edge peaks = energy[emin:emax]
        baseline      fitted baseline array over pre-edge peak energies
        mu            spectrum over pre-edge peak energies
        peaks         baseline-subtraced spectrum over pre-edge peak energies
        dmu           estimated uncertainty in peaks from fit
        centroid      estimated centroid of pre-edge peaks (see note 3)
        peak_energies list of predicted peak energies (see note 4)
        fit_details   details of fit to extract pre-edge peaks.

    (if the output group is None, _sys.xafsGroup will be written to)

    Notes
    -----
     1 If the first argument is a Group, it must contain 'energy' and 'norm'.
       See First Argrument Group in Documentation

     2 A function will be fit to the input mu(E) data over the range between
       [emin:elo] and [ehi:emax], ignorng the pre-edge peaks in the
       region [elo:ehi].  The baseline function is specified with the `form`
       keyword argument, which can be one of
           'lorentzian', 'gaussian', or 'voigt',
       with 'lorentzian' the default.  In addition, the `with_line` keyword
       argument can be used to add a line to this baseline function.

     3 The value calculated for `prepeaks.centroid`  will be found as
         (prepeaks.energy*prepeaks.peaks).sum() / prepeaks.peaks.sum()
     4 The values in the `peak_energies` list will be predicted energies
       of the peaks in `prepeaks.peaks` as found by peakutils.

    """
    energy, norm, group = parse_group_args(energy, members=('energy', 'norm'),
                                           defaults=(norm,), group=group,
                                           fcn_name='pre_edge_baseline')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(norm.shape) > 1:
        norm = norm.squeeze()

    dat_emin, dat_emax = min(energy), max(energy)

    dat_e0 = getattr(group, 'e0', -1)

    if dat_e0 > 0:
        if emin is None:
            emin = dat_e0 - 30.0
        if emax is None:
            emax = dat_e0 - 1.0
        if elo is None:
            elo = dat_e0 - 15.0
        if ehi is None:
            ehi = dat_e0 - 5.0
        if emin < 0:
            emin += dat_e0
        if elo < 0:
            elo += dat_e0
        if emax < dat_emin:
            emax += dat_e0
        if ehi < dat_emin:
            ehi += dat_e0

    if emax is None or emin is None or elo is None or ehi is None:
        raise ValueError("must provide emin and emax to pre_edge_baseline")


    # get indices for input energies
    if emin > emax:
        emin, emax = emax, emin
    if emin > elo:
        elo, emin = emin, elo
    if ehi > emax:
        ehi, emax = emax, ehi

    imin = index_of(energy, emin)
    ilo  = index_of(energy, elo)
    ihi  = index_of(energy, ehi)
    imax = index_of(energy, emax)

    # build xdat, ydat: dat to fit (skipping pre-edge peaks)
    xdat = np.concatenate((energy[imin:ilo+1], energy[ihi:imax+1]))
    ydat = np.concatenate((norm[imin:ilo+1], norm[ihi:imax+1]))

    # build fitting model: note that we always include
    # a LinearModel but may fix slope and intercept
    form = form.lower()
    if form.startswith('voig'):
        model = VoigtModel()
    elif form.startswith('gaus'):
        model = GaussianModel()
    else:
        model = LorentzianModel()

    model += LinearModel()
    params = model.make_params(amplitude=1.0, sigma=2.0,
                               center=emax,
                               intercept=0, slope=0)
    params['amplitude'].min =  0.0
    params['sigma'].min     =  0.25
    params['sigma'].max     = 50.0
    params['center'].max    = emax + 25.0
    params['center'].min    = emax - 25.0

    if not with_line:
        params['slope'].vary = False
        params['intercept'].vary = False

    # run fit
    result = model.fit(ydat, params, x=xdat)

    # energy including pre-edge peaks, for output
    edat = energy[imin: imax+1]

    # get baseline and resulting mu over edat range
    bline = result.eval(result.params, x=edat)
    mu  = norm[imin:imax+1]
    peaks = mu-bline

    # estimate centroid
    cen = (edat*peaks).sum() / peaks.sum()

    # uncertainty in mu includes only uncertainties in baseline fit
    # and uncertainty in centroid:
    try:
        dpeaks = result.eval_uncertainty(result.params, x=edat)
    except:
        dbpeaks = 0.0

    cen_plus = (edat*(peaks+dpeaks)).sum()/ (peaks+dpeaks).sum()
    cen_minus = (edat*(peaks-dpeaks)).sum()/ (peaks-dpeaks).sum()
    dcen = abs(cen_minus - cen_plus) / 2.0

    # locate peak positions
    peak_energies = []
    if HAS_PEAKUTILS:
        peak_ids = peakutils.peak.indexes(peaks, thres=0.05, min_dist=2)
        peak_energies = [edat[pid] for pid in peak_ids]

    group = set_xafsGroup(group, _larch=_larch)
    group.prepeaks = Group(energy=edat, mu=mu, baseline=bline,
                           peaks=peaks, delta_peaks=dpeaks,
                           centroid=cen, delta_centroid=dcen,
                           peak_energies=peak_energies,
                           fit_details=result,
                           emin=emin, emax=emax, elo=elo, ehi=ehi,
                           form=form, with_line=with_line)
    return
Exemplo n.º 29
0
def preedge(energy, mu, e0=None, step=None,
            nnorm=2, nvict=0, pre1=None, pre2=-50,
            norm1=100, norm2=None):
    """pre edge subtraction, normalization for XAFS (straight python)

    This performs a number of steps:
       1. determine E0 (if not supplied) from max of deriv(mu)
       2. fit a line of polymonial to the region below the edge
       3. fit a polymonial to the region above the edge
       4. extrapolae the two curves to E0 to determine the edge jump

    Arguments
    ----------
    energy:  array of x-ray energies, in eV
    mu:      array of mu(E)
    e0:      edge energy, in eV.  If None, it will be determined here.
    step:    edge jump.  If None, it will be determined here.
    pre1:    low E range (relative to E0) for pre-edge fit
    pre2:    high E range (relative to E0) for pre-edge fit
    nvict:   energy exponent to use for pre-edg fit.  See Note
    norm1:   low E range (relative to E0) for post-edge fit
    norm2:   high E range (relative to E0) for post-edge fit
    nnorm:   degree of polynomial (ie, nnorm+1 coefficients will be found) for
             post-edge normalization curve. Default=2 (quadratic), max=5
    Returns
    -------
      dictionary with elements (among others)
          e0          energy origin in eV
          edge_step   edge step
          norm        normalized mu(E)
          pre_edge    determined pre-edge curve
          post_edge   determined post-edge, normalization curve

    Notes
    -----
     1 nvict gives an exponent to the energy term for the fits to the pre-edge
       and the post-edge region.  For the pre-edge, a line (m * energy + b) is
       fit to mu(energy)*energy**nvict over the pre-edge region,
       energy=[e0+pre1, e0+pre2].  For the post-edge, a polynomial of order
       nnorm will be fit to mu(energy)*energy**nvict of the post-edge region
       energy=[e0+norm1, e0+norm2].

    """
    energy = remove_dups(energy)
    if e0 is None or e0 < energy[1] or e0 > energy[-2]:
        e0 = _finde0(energy, mu)

    nnorm = max(min(nnorm, MAX_NNORM), 0)
    ie0 = index_nearest(energy, e0)
    e0 = energy[ie0]

    pre1_input = pre1
    norm2_input = norm2

    if pre1 is None:  pre1  = min(energy) - e0
    if norm2 is None: norm2 = max(energy) - e0
    if norm2 < 0:     norm2 = max(energy) - e0 - norm2
    pre1  = max(pre1,  (min(energy) - e0))
    norm2 = min(norm2, (max(energy) - e0))

    if pre1 > pre2:
        pre1, pre2 = pre2, pre1
    if norm1 > norm2:
        norm1, norm2 = norm2, norm1

    p1 = index_of(energy, pre1+e0)
    p2 = index_nearest(energy, pre2+e0)
    if p2-p1 < 2:
        p2 = min(len(energy), p1 + 2)

    omu  = mu*energy**nvict
    ex, mx = remove_nans2(energy[p1:p2], omu[p1:p2])
    precoefs = polyfit(ex, mx, 1)
    pre_edge = (precoefs[0] * energy + precoefs[1]) * energy**(-nvict)
    # normalization
    p1 = index_of(energy, norm1+e0)
    p2 = index_nearest(energy, norm2+e0)
    if p2-p1 < 2:
        p2 = min(len(energy), p1 + 2)

    # reduce dimension to linear if less than 75 eV given
    if abs(norm2-norm1) < 75.0:
        nnorm = min(nnorm, 1)

    coefs = polyfit(energy[p1:p2], omu[p1:p2], nnorm)
    post_edge = 0
    norm_coefs = []
    for n, c in enumerate(reversed(list(coefs))):
        post_edge += c * energy**(n-nvict)
        norm_coefs.append(c)
    edge_step = step
    if edge_step is None:
        edge_step = post_edge[ie0] - pre_edge[ie0]

    norm = (mu - pre_edge)/edge_step
    return {'e0': e0, 'edge_step': edge_step, 'norm': norm,
            'pre_edge': pre_edge, 'post_edge': post_edge,
            'norm_coefs': norm_coefs, 'nvict': nvict,
            'nnorm': nnorm, 'norm1': norm1, 'norm2': norm2,
            'pre1': pre1, 'pre2': pre2, 'precoefs': precoefs,
            'norm2_input': norm2_input,  'pre1_input': pre1_input}
Exemplo n.º 30
0
def pre_edge(energy,
             mu=None,
             group=None,
             e0=None,
             step=None,
             nnorm=3,
             nvict=0,
             pre1=None,
             pre2=-50,
             norm1=100,
             norm2=None,
             make_flat=True,
             _larch=None):
    """pre edge subtraction, normalization for XAFS

    This performs a number of steps:
       1. determine E0 (if not supplied) from max of deriv(mu)
       2. fit a line of polymonial to the region below the edge
       3. fit a polymonial to the region above the edge
       4. extrapolae the two curves to E0 to determine the edge jump

    Arguments
    ----------
    energy:  array of x-ray energies, in eV, or group (see note)
    mu:      array of mu(E)
    group:   output group
    e0:      edge energy, in eV.  If None, it will be determined here.
    step:    edge jump.  If None, it will be determined here.
    pre1:    low E range (relative to E0) for pre-edge fit
    pre2:    high E range (relative to E0) for pre-edge fit
    nvict:   energy exponent to use for pre-edg fit.  See Note
    norm1:   low E range (relative to E0) for post-edge fit
    norm2:   high E range (relative to E0) for post-edge fit
    nnorm:   degree of polynomial (ie, nnorm+1 coefficients will be found) for
             post-edge normalization curve. Default=3 (quadratic), max=5
    make_flat: boolean (Default True) to calculate flattened output.


    Returns
    -------
      None

    The following attributes will be written to the output group:
        e0          energy origin
        edge_step   edge step
        norm        normalized mu(E)
        flat        flattened, normalized mu(E)
        pre_edge    determined pre-edge curve
        post_edge   determined post-edge, normalization curve
        dmude       derivative of mu(E)

    (if the output group is None, _sys.xafsGroup will be written to)

    Notes
    -----
     1 nvict gives an exponent to the energy term for the fits to the pre-edge
       and the post-edge region.  For the pre-edge, a line (m * energy + b) is
       fit to mu(energy)*energy**nvict over the pre-edge region,
       energy=[e0+pre1, e0+pre2].  For the post-edge, a polynomial of order
       nnorm will be fit to mu(energy)*energy**nvict of the post-edge region
       energy=[e0+norm1, e0+norm2].

     2 If the first argument is a Group, it must contain 'energy' and 'mu'.
       If it exists, group.e0 will be used as e0.
       See First Argrument Group in Documentation
    """

    energy, mu, group = parse_group_args(energy,
                                         members=('energy', 'mu'),
                                         defaults=(mu, ),
                                         group=group,
                                         fcn_name='pre_edge')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    pre_dat = preedge(energy,
                      mu,
                      e0=e0,
                      step=step,
                      nnorm=nnorm,
                      nvict=nvict,
                      pre1=pre1,
                      pre2=pre2,
                      norm1=norm1,
                      norm2=norm2)

    group = set_xafsGroup(group, _larch=_larch)

    e0 = pre_dat['e0']
    norm = pre_dat['norm']
    norm1 = pre_dat['norm1']
    norm2 = pre_dat['norm2']
    # generate flattened spectra, by fitting a quadratic to .norm
    # and removing that.
    flat = norm
    ie0 = index_nearest(energy, e0)
    p1 = index_of(energy, norm1 + e0)
    p2 = index_nearest(energy, norm2 + e0)
    if p2 - p1 < 2:
        p2 = min(len(energy), p1 + 2)

    if make_flat and p2 - p1 > 4:
        enx, mux = remove_nans2(energy[p1:p2], norm[p1:p2])
        # enx, mux = (energy[p1:p2], norm[p1:p2])
        fpars = Parameters()
        fpars.add('c0', value=0, vary=True)
        fpars.add('c1', value=0, vary=True)
        fpars.add('c2', value=0, vary=True)
        fit = Minimizer(flat_resid, fpars, fcn_args=(enx, mux))
        result = fit.leastsq(xtol=1.e-6, ftol=1.e-6)

        fc0 = result.params['c0'].value
        fc1 = result.params['c1'].value
        fc2 = result.params['c2'].value

        flat_diff = fc0 + energy * (fc1 + energy * fc2)
        flat = norm - flat_diff + flat_diff[ie0]
        flat[:ie0] = norm[:ie0]

    group.e0 = e0
    group.norm = norm
    group.flat = flat
    group.dmude = np.gradient(mu) / np.gradient(energy)
    group.edge_step = pre_dat['edge_step']
    group.pre_edge = pre_dat['pre_edge']
    group.post_edge = pre_dat['post_edge']

    group.pre_edge_details = Group()
    group.pre_edge_details.pre1 = pre_dat['pre1']
    group.pre_edge_details.pre2 = pre_dat['pre2']
    group.pre_edge_details.nnorm = pre_dat['nnorm']
    group.pre_edge_details.norm1 = pre_dat['norm1']
    group.pre_edge_details.norm2 = pre_dat['norm2']
    group.pre_edge_details.pre1_input = pre_dat['pre1_input']
    group.pre_edge_details.norm2_input = pre_dat['norm2_input']
    group.pre_edge_details.pre_slope = pre_dat['precoefs'][0]
    group.pre_edge_details.pre_offset = pre_dat['precoefs'][1]

    for i in range(MAX_NNORM):
        if hasattr(group, 'norm_c%i' % i):
            delattr(group, 'norm_c%i' % i)
    for i, c in enumerate(pre_dat['norm_coefs']):
        setattr(group.pre_edge_details, 'norm_c%i' % i, c)
    return
Exemplo n.º 31
0
def mback(energy,
          mu,
          group=None,
          order=3,
          z=None,
          edge='K',
          e0=None,
          emin=None,
          emax=None,
          whiteline=None,
          leexiang=False,
          tables='chantler',
          fit_erfc=False,
          return_f1=False,
          _larch=None):
    """
    Match mu(E) data for tabulated f''(E) using the MBACK algorithm and,
    optionally, the Lee & Xiang extension

    Arguments:
      energy, mu:    arrays of energy and mu(E)
      order:         order of polynomial [3]
      group:         output group (and input group for e0)
      z:             Z number of absorber
      edge:          absorption edge (K, L3)
      e0:            edge energy
      emin:          beginning energy for fit
      emax:          ending energy for fit
      whiteline:     exclusion zone around white lines
      leexiang:      flag to use the Lee & Xiang extension
      tables:        'chantler' (default) or 'cl'
      fit_erfc:      True to float parameters of error function
      return_f1:     True to put the f1 array in the group

    Returns:
      group.f2:      tabulated f2(E)
      group.f1:      tabulated f1(E) (if return_f1 is True)
      group.fpp:     matched data
      group.mback_params:  Group of parameters for the minimization

    References:
      * MBACK (Weng, Waldo, Penner-Hahn): http://dx.doi.org/10.1086/303711
      * Lee and Xiang: http://dx.doi.org/10.1088/0004-637X/702/2/970
      * Cromer-Liberman: http://dx.doi.org/10.1063/1.1674266
      * Chantler: http://dx.doi.org/10.1063/1.555974
    """
    order = int(order)
    if order < 1: order = 1  # set order of polynomial
    if order > MAXORDER: order = MAXORDER

    ### implement the First Argument Group convention
    energy, mu, group = parse_group_args(energy,
                                         members=('energy', 'mu'),
                                         defaults=(mu, ),
                                         group=group,
                                         fcn_name='mback')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    group = set_xafsGroup(group, _larch=_larch)

    if e0 is None:  # need to run find_e0:
        e0 = xray_edge(z, edge, _larch=_larch)[0]
    if e0 is None:
        e0 = group.e0
    if e0 is None:
        find_e0(energy, mu, group=group)

    ### theta is an array used to exclude the regions <emin, >emax, and
    ### around white lines, theta=0.0 in excluded regions, theta=1.0 elsewhere
    (i1, i2) = (0, len(energy) - 1)
    if emin is not None: i1 = index_of(energy, emin)
    if emax is not None: i2 = index_of(energy, emax)
    theta = np.ones(len(energy))  # default: 1 throughout
    theta[0:i1] = 0
    theta[i2:-1] = 0
    if whiteline:
        pre = 1.0 * (energy < e0)
        post = 1.0 * (energy > e0 + float(whiteline))
        theta = theta * (pre + post)
    if edge.lower().startswith('l'):
        l2 = xray_edge(z, 'L2', _larch=_larch)[0]
        l2_pre = 1.0 * (energy < l2)
        l2_post = 1.0 * (energy > l2 + float(whiteline))
        theta = theta * (l2_pre + l2_post)

    ## this is used to weight the pre- and post-edge differently as
    ## defined in the MBACK paper
    weight1 = 1 * (energy < e0)
    weight2 = 1 * (energy > e0)
    weight = np.sqrt(sum(weight1)) * weight1 + np.sqrt(sum(weight2)) * weight2

    ## get the f'' function from CL or Chantler
    if tables.lower() == 'chantler':
        f1 = f1_chantler(z, energy, _larch=_larch)
        f2 = f2_chantler(z, energy, _larch=_larch)
    else:
        (f1, f2) = f1f2(z, energy, edge=edge, _larch=_larch)
    group.f2 = f2
    if return_f1: group.f1 = f1

    n = edge
    if edge.lower().startswith('l'): n = 'L'
    params = Group(
        s=Parameter(1, vary=True, _larch=_larch),  # scale of data
        xi=Parameter(50, vary=fit_erfc, min=0, _larch=_larch),  # width of erfc
        em=Parameter(xray_line(z, n, _larch=_larch)[0],
                     vary=False,
                     _larch=_larch),  # erfc centroid
        e0=Parameter(e0, vary=False, _larch=_larch),  # abs. edge energy
        ## various arrays need by the objective function
        en=energy,
        mu=mu,
        f2=group.f2,
        weight=weight,
        theta=theta,
        leexiang=leexiang,
        _larch=_larch)
    if fit_erfc:
        params.a = Parameter(1, vary=True, _larch=_larch)  # amplitude of erfc
    else:
        params.a = Parameter(0, vary=False, _larch=_larch)  # amplitude of erfc

    for i in range(order):  # polynomial coefficients
        setattr(params, 'c%d' % i, Parameter(0, vary=True, _larch=_larch))

    fit = Minimizer(match_f2, params, _larch=_larch, toler=1.e-5)
    fit.leastsq()

    eoff = energy - params.e0.value
    normalization_function = params.a.value * erfc(
        (energy - params.em.value) / params.xi.value) + params.c0.value
    for i in range(MAXORDER):
        j = i + 1
        attr = 'c%d' % j
        if hasattr(params, attr):
            normalization_function = normalization_function + getattr(
                getattr(params, attr), 'value') * eoff**j

    group.fpp = params.s * mu - normalization_function
    group.mback_params = params
Exemplo n.º 32
0
def preedge(energy,
            mu,
            e0=None,
            step=None,
            nnorm=2,
            nvict=0,
            pre1=None,
            pre2=-50,
            norm1=100,
            norm2=None):
    """pre edge subtraction, normalization for XAFS (straight python)

    This performs a number of steps:
       1. determine E0 (if not supplied) from max of deriv(mu)
       2. fit a line of polymonial to the region below the edge
       3. fit a polymonial to the region above the edge
       4. extrapolae the two curves to E0 to determine the edge jump

    Arguments
    ----------
    energy:  array of x-ray energies, in eV
    mu:      array of mu(E)
    e0:      edge energy, in eV.  If None, it will be determined here.
    step:    edge jump.  If None, it will be determined here.
    pre1:    low E range (relative to E0) for pre-edge fit
    pre2:    high E range (relative to E0) for pre-edge fit
    nvict:   energy exponent to use for pre-edg fit.  See Note
    norm1:   low E range (relative to E0) for post-edge fit
    norm2:   high E range (relative to E0) for post-edge fit
    nnorm:   degree of polynomial (ie, nnorm+1 coefficients will be found) for
             post-edge normalization curve. Default=2 (quadratic), max=5
    Returns
    -------
      dictionary with elements (among others)
          e0          energy origin in eV
          edge_step   edge step
          norm        normalized mu(E)
          pre_edge    determined pre-edge curve
          post_edge   determined post-edge, normalization curve

    Notes
    -----
     1 nvict gives an exponent to the energy term for the fits to the pre-edge
       and the post-edge region.  For the pre-edge, a line (m * energy + b) is
       fit to mu(energy)*energy**nvict over the pre-edge region,
       energy=[e0+pre1, e0+pre2].  For the post-edge, a polynomial of order
       nnorm will be fit to mu(energy)*energy**nvict of the post-edge region
       energy=[e0+norm1, e0+norm2].

    """
    energy = remove_dups(energy)
    if e0 is None or e0 < energy[0] or e0 > energy[-1]:
        energy = remove_dups(energy)
        dmu = np.gradient(mu) / np.gradient(energy)
        # find points of high derivative
        high_deriv_pts = np.where(dmu > max(dmu) * 0.05)[0]
        idmu_max, dmu_max = 0, 0
        for i in high_deriv_pts:
            if (dmu[i] > dmu_max and (i + 1 in high_deriv_pts)
                    and (i - 1 in high_deriv_pts)):
                idmu_max, dmu_max = i, dmu[i]

        e0 = energy[idmu_max]
    nnorm = max(min(nnorm, MAX_NNORM), 0)
    ie0 = index_nearest(energy, e0)
    e0 = energy[ie0]

    pre1_input = pre1
    norm2_input = norm2

    if pre1 is None: pre1 = min(energy) - e0
    if norm2 is None: norm2 = max(energy) - e0
    if norm2 < 0: norm2 = max(energy) - e0 - norm2
    pre1 = max(pre1, (min(energy) - e0))
    norm2 = min(norm2, (max(energy) - e0))

    if pre1 > pre2:
        pre1, pre2 = pre2, pre1
    if norm1 > norm2:
        norm1, norm2 = norm2, norm1

    p1 = index_of(energy, pre1 + e0)
    p2 = index_nearest(energy, pre2 + e0)
    if p2 - p1 < 2:
        p2 = min(len(energy), p1 + 2)

    omu = mu * energy**nvict
    ex, mx = remove_nans2(energy[p1:p2], omu[p1:p2])
    precoefs = polyfit(ex, mx, 1)
    pre_edge = (precoefs[0] * energy + precoefs[1]) * energy**(-nvict)
    # normalization
    p1 = index_of(energy, norm1 + e0)
    p2 = index_nearest(energy, norm2 + e0)
    if p2 - p1 < 2:
        p2 = min(len(energy), p1 + 2)

    # reduce dimension to linear if less than 75 eV given
    if abs(norm2 - norm1) < 75.0:
        nnorm = min(nnorm, 1)

    coefs = polyfit(energy[p1:p2], omu[p1:p2], nnorm)
    post_edge = 0
    norm_coefs = []
    for n, c in enumerate(reversed(list(coefs))):
        post_edge += c * energy**(n - nvict)
        norm_coefs.append(c)
    edge_step = step
    if edge_step is None:
        edge_step = post_edge[ie0] - pre_edge[ie0]

    norm = (mu - pre_edge) / edge_step
    return {
        'e0': e0,
        'edge_step': edge_step,
        'norm': norm,
        'pre_edge': pre_edge,
        'post_edge': post_edge,
        'norm_coefs': norm_coefs,
        'nvict': nvict,
        'nnorm': nnorm,
        'norm1': norm1,
        'norm2': norm2,
        'pre1': pre1,
        'pre2': pre2,
        'precoefs': precoefs,
        'norm2_input': norm2_input,
        'pre1_input': pre1_input
    }
Exemplo n.º 33
0
def estimate_noise(k, chi=None, group=None, rmin=15.0, rmax=30.0,
                   kweight=1, kmin=0, kmax=20, dk=4, dk2=None, kstep=0.05,
                   kwindow='kaiser', nfft=2048, _larch=None, **kws):
    """
    estimate noise levels in EXAFS spectrum and estimate highest k
    where data is above the noise level
    Parameters:
    -----------
      k:        1-d array of photo-electron wavenumber in Ang^-1 (or group)
      chi:      1-d array of chi
      group:    output Group  [see Note below]
      rmin:     minimum R value for high-R region of chi(R)
      rmax:     maximum R value for high-R region of chi(R)
      kweight:  exponent for weighting spectra by k**kweight [1]
      kmin:     starting k for FT Window [0]
      kmax:     ending k for FT Window  [20]
      dk:       tapering parameter for FT Window [4]
      dk2:      second tapering parameter for FT Window [None]
      kstep:    value to use for delta_k ( Ang^-1) [0.05]
      window:   name of window type ['kaiser']
      nfft:     value to use for N_fft [2048].

    Returns:
    ---------
      None   -- outputs are written to supplied group.  Values (scalars) written
      to output group:
        epsilon_k     estimated noise in chi(k)
        epsilon_r     estimated noise in chi(R)
        kmax_suggest  highest estimated k value where |chi(k)| > epsilon_k

    Notes:
    -------

     1. This method uses the high-R portion of chi(R) as a measure of the noise
        level in the chi(R) data and uses Parseval's theorem to convert this noise
        level to that in chi(k).  This method implicitly assumes that there is no
        signal in the high-R portion of the spectrum, and that the noise in the
        spectrum s "white" (independent of R) .  Each of these assumptions can be
        questioned.
     2. The estimate for 'kmax_suggest' has a tendency to be fair but pessimistic
        in how far out the chi(k) data goes before being dominated by noise.
     3. Follows the 'First Argument Group' convention, so that you can either
        specifiy all of (an array for 'k', an array for 'chi', option output Group)
        OR pass a group with 'k' and 'chi' as the first argument
    """
    k, chi, group = parse_group_args(k, members=('k', 'chi'),
                                     defaults=(chi,), group=group,
                                     fcn_name='esitmate_noise')



    # save _sys.xafsGroup -- we want to NOT write to it here!
    savgroup = set_xafsGroup(None, _larch=_larch)
    tmpgroup = Group()
    rmax_out = min(10*pi, rmax+2)

    xftf(k, chi, kmin=kmin, kmax=kmax, rmax_out=rmax_out,
         kweight=kweight, dk=dk, dk2=dk2, kwindow=kwindow,
         nfft=nfft, kstep=kstep, group=tmpgroup, _larch=_larch)

    chir  = tmpgroup.chir
    rstep = tmpgroup.r[1] - tmpgroup.r[0]

    irmin = int(0.01 + rmin/rstep)
    irmax = min(nfft/2,  int(1.01 + rmax/rstep))
    highr = realimag(chir[irmin:irmax])

    # get average of window function value, scale eps_r scale by this
    # this is imperfect, but improves the result.
    kwin_ave = tmpgroup.kwin.sum()*kstep/(kmax-kmin)
    eps_r = sqrt((highr*highr).sum() / len(highr)) / kwin_ave

    # use Parseval's theorem to convert epsilon_r to epsilon_k,
    # compensating for kweight
    w = 2 * kweight + 1
    scale = sqrt((2*pi*w)/(kstep*(kmax**w - kmin**w)))
    eps_k = scale*eps_r

    # do reverse FT to get chiq array
    xftr(tmpgroup.r, tmpgroup.chir, group=tmpgroup, rmin=0.5, rmax=9.5,
         dr=1.0, window='parzen', nfft=nfft, kstep=kstep, _larch=_larch)

    # sets kmax_suggest to the largest k value for which
    # | chi(q) / k**kweight| > epsilon_k
    iq0 = index_of(tmpgroup.q, (kmax+kmin)/2.0)
    tst = tmpgroup.chiq_mag[iq0:] / ( tmpgroup.q[iq0:])**kweight
    kmax_suggest = tmpgroup.q[iq0 + where(tst < eps_k)[0][0]]

    # restore original _sys.xafsGroup, set output variables
    _larch.symtable._sys.xafsGroup = savgroup
    group = set_xafsGroup(group, _larch=_larch)
    group.epsilon_k = eps_k
    group.epsilon_r = eps_r
    group.kmax_suggest = kmax_suggest