Exemplo n.º 1
0
    def test_fail_on_mismatching_dimensionality(self):
        from lasagne.layers import SpatialPyramidPoolingLayer

        with pytest.raises(ValueError) as exc:
            SpatialPyramidPoolingLayer((10, 20, 30))
        assert "Expected 4 input dimensions" in exc.value.args[0]
        with pytest.raises(ValueError) as exc:
            SpatialPyramidPoolingLayer((10, 20, 30, 40, 50))
        assert "Expected 4 input dimensions" in exc.value.args[0]
def build_model_L(pyramid_dims=[6, 4, 2, 1]):
    input_var = tensor.ftensor4('x')  # (B, C, H, W)
    input0 = InputLayer(shape=(None, None, None, None),
                        input_var=input_var,
                        name='input0')
    x = SpatialPyramidPoolingLayer(input0,
                                   pool_dims=pyramid_dims,
                                   implementation='fast')
    return x
Exemplo n.º 3
0
def build_architecture(input_shape, trained_weights=None):
    net = {}

    net['input'] = InputLayer((None, 1, None, None))
    net['large_conv1'] = batch_norm(
        Conv2DLayer(net['input'],
                    num_filters=32,
                    filter_size=11,
                    stride=3,
                    pad=5,
                    flip_filters=False))
    net['large_pool1'] = MaxPool2DLayer(net['large_conv1'],
                                        pool_size=3,
                                        stride=2)

    net['large_conv2'] = batch_norm(
        Conv2DLayer(net['large_pool1'],
                    num_filters=64,
                    filter_size=5,
                    pad=2,
                    flip_filters=False))
    net['large_pool2'] = MaxPool2DLayer(net['large_conv2'], pool_size=3)

    net['large_conv3'] = batch_norm(
        Conv2DLayer(net['large_pool2'],
                    num_filters=128,
                    filter_size=3,
                    pad=1,
                    flip_filters=False))
    net['large_conv4'] = batch_norm(
        Conv2DLayer(net['large_conv3'],
                    num_filters=128,
                    filter_size=3,
                    pad=1,
                    flip_filters=False))
    net['large_pool4'] = MaxPool2DLayer(net['large_conv4'], pool_size=2)
    net['large_conv5'] = batch_norm(
        Conv2DLayer(net['large_pool4'],
                    num_filters=128,
                    filter_size=3,
                    pad=1,
                    flip_filters=False))

    net['large_pool5'] = SpatialPyramidPoolingLayer(net['large_conv5'],
                                                    implementation='kaiming')

    net['fc1'] = batch_norm(DenseLayer(net['large_pool5'], num_units=2048))
    net['fc2'] = batch_norm(DenseLayer(net['fc1'], num_units=2048))

    if trained_weights:
        lasagne.layers.set_all_param_values(net['fc2'], trained_weights)

    return net
Exemplo n.º 4
0
    def layer(self, input_layer, pool_dims, mode='max', implementation='fast'):
        from lasagne.layers import SpatialPyramidPoolingLayer

        if implementation != 'kaiming':
            try:
                import theano.tensor as T
                from lasagne.layers.pool import pool_2d
                pool_2d(T.tensor4(),
                        ws=T.ivector(),
                        stride=T.ivector(),
                        ignore_border=True,
                        pad=None)
            except ValueError:
                pytest.skip('Old theano version')

        return SpatialPyramidPoolingLayer(input_layer,
                                          pool_dims=pool_dims,
                                          mode=mode,
                                          implementation=implementation)